
ECE 6254, Spring 2024

Homework # 4

Due Sunday, March 3, at 11:59pm EST.

Suggested reading:

� Elements of Statistical Learning (by Hastie, Tibshirani, and Friedman): Section 4.3 (pages
106–111) has a discussion of LDA; Section 4.4 (pages 119–128) contains a good discussion of
logistic regression; Section 4.5 (pages 129–135) discusses the perceptron learning algorithm
and optimal separating hyperplanes; Sections 12.1–12.3 (pages 417–438) discuss support vec-
tor machines and kernels in more detail.

� Learning from Data (by Abu-Mostafa, Magdon-Ismail, Lin): Section 3.1 (pages 77–82) dis-
cusses linear classification and the perceptron learning algorithm; Section 3.3 (pages 88–99)
discusses logistic regression, gradient descent, and stochastic gradient descent.

Problems:

1. Logistic regression and maximum likelihood estimation. In class, we discussed lo-
gistic regression. This problem will derive he gradient of the log-likelihood function, then
show three ways to solve for the parameters w and b. Suppose we have n training points
(x1, y1), . . . (xn, yn) where each xi ∈ Rd and yi ∈ {0, 1} is a “label” that indicates which of
two classes xi corresponds to.

The key question in fitting a logistic regression model is deciding how to set the parameters
w ∈ Rd and b ∈ R based on the training data. In this problem, we derive all the necessary
quantities to estimate the parameters using gradient descent. For this problem, let g be the
logistic function, i.e., g(t) = 1

1+e−t .

(a) If yi = 1, we would like to have g(w⊤xi + b) ≈ 1, in which case

log(g(w⊤xi + b)) ≈ 0.

Similarly, if yi = 0, we would like g(w⊤xi+b) ≈ 0, or said differently, 1−g(w⊤xi+b) ≈ 1,
in which case

log(1− g(w⊤xi + b)) ≈ 0.

Note in both cases, the terms on the left-hand side are always negative, so that to make
them ≈ 0 corresponds to making these terms as large as possible. Combining these
desired criteria together, we can express the problem of fitting w and b as

maximize
w,b

∑
i:yi=1

log(g(w⊤xi + b)) +
∑
i:yi=0

log(1− g(w⊤xi + b)).

It is somewhat more convenient to re-express this as the equivalent problem:

maximize
w,b

n∑
i=1

yi log(g(w
⊤xi + b)) + (1− yi) log(1− g(w⊤xi + b)).
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Show that, by plugging in the formula for g, this problem reduces to

maximize
w,b

n∑
i=1

yi(w
⊤xi + b)− log(1 + ew

⊤xi+b).

(b) We would now like to use an iterative algorithm like gradient descent to solve this
optimization problem. To do this, we will need to calculate the gradient. Note that if
we use the notation

x̃i =

[
xi

1

]
θ =

[
w
b

]
then we can re-write our objective function as

f(θ) =

n∑
i=1

yiθ
⊤x̃i − log(1 + eθ

⊤x̃i)

With this notation, compute a formula for the gradient ∇f(θ).

(c) We will now implement logistic regression using standard gradient descent for perform-
ing the maximum likelihood estimation step. Review the slides and lecture notes and
implement the functions log grad and grad desc in logistic regression.py. Test
out the file by experimenting a bit with the various parameters – especially the “step
size” (or learning rate) α – to obtain a good convergence rate. I would recommend trying
a wide variety starting with α ≈ 1e− 3 and ranging to α ≈ 1e− 6. You should also feel
free to play around with other stopping criteria than those provided. For this problem,
report the value of α you used and the number of iterations required for convergence for
these parameters.

(d) We now want to implement Newton’s method. This algorithm requires computing both
the gradient and the Hessian at each iteration. Show that the Hessian in this case is
given by

∇2f(θ) = −
∑
i

x̃ix̃
⊤
i

1

1 + e−θ⊤x̃i

(
1− 1

1 + e−θ⊤x̃i

)
.

(e) Implement the functions in log hess and newton in logistic regression.py to im-
plement Newton’s method for solving this problem. Pay attention to the following:

� Take extra care in your implementation in making sure you have the correct signs
in your algorithm – remember we are trying to minimize the negative log-likelihood.
If your algorithm is not converging, this is a likely suspect.

� In the notes I assume that the x̃i are column vectors, but in the Python code they
are treated as row vectors.

� Make sure you use the proper operations in python. In particular A*B is not a matrix
multiplication.

Report the number of iterations required for convergence. In addition, provide a plot
showing the “cost” decreasing with iterations for both gradient descent and Newton’s
method. Compare this to the results from part (c).
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(f) We will now implement yet another variant of gradient descent called stochastic gradient
descent (SGD) to perform the optimization step in logistic regression. In standard
gradient descent, in order to compute the gradient we must compute the sum

n∑
i=1

x̃i(yi − g(θT x̃i)) (1)

In the data set we’re using here, this is not much of a challenge, but if our data set is
extremely massive (i.e., if n is extraordinarily large) then even simply computing the
gradient can be computationally intractable. One possibility in this case is known as
stochastic gradient descent, and consists of simply selecting one x̃i at random and treat-
ing x̃i(yi − g(θT x̃i)) as a rough approximation to (1) and proceeding with the standard
gradient descent approach as before. This will (in general) require more iterations, but
each iteration can be much cheaper when n is large, so can be very effective when dealing
with extremely large data sets.

More generally, we can select a block of k samples {x̃i1 , . . . , x̃ik} at random and treat

k∑
j=1

x̃ij (yij − g(θT x̃ij )) (2)

as a rough approximation to (1).

Implement the general version of stochastic gradient descent by completing the stoc grad desc

function in lr-sgd.py. Keep the following in mind:

� Do not change the parameters alpha , maxiter, and tol. These have been pre-
tuned for you to ensure relatively smooth convergence.

� Set a stopping criterion based on the change in θ. In particular, you should stop
if ∥θk − θk−1∥2 ≤ tol. This is to be consistent with the idea expressed in the
footnote.

� You may find the command np.random.randint(0,n,k) to be of use.

Provide a plot showing the “cost”1 decreasing with iterations for block sizes of k = 1, 5, 10
and report the number of iterations required for convergence.

2. Uniform Näıve Bayes.

(a) Assume that you have access to n i.i.d. realization of {xi}ni=1 of a random variable X
distributed uniformly on the interval [a, b]. Show that the maximum likelihood estimators
for parameters a and b with a < b are

â = min
i

xi b̂ = max
i

xi. (3)

1Note that when trying to scale the problem to larger scales, you will not want to compute the cost/log-likelihood
at every iteration as this alone wipes out any computational savings from using a stochastic estimate of the gradient.
It is only for visualization purposes that we compute the cost at every iteration in this problem
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(b) Suppose now that you are building a Näıve Bayes classifier for data containing two
independent continuous attributes, x1 and x2. That is, the data x = [x1, x2]

⊤. Each
data point has a corresponding label y ∈ {1, . . . ,K}. All classes are assumed to be
equally likely. You decide to represent the conditional distributions fX|Y (xi|y) as uniform
distributions and build a Uniform Naive Bayes Classifier. Your conditional distributions
would be represented using the parameters ai,k and bi,k, with ai,k < bi,k, as follows.

fX|Y (xi|y = k) =

{
1

bi,k−ai,k
if ai,k ≤ xi ≤ bi,k

0 else.

Here, the index i refers here to the component (1 or 2) of the vector, not to the index of
a point in the dataset. Given a set of data, what are the MLEs for ai,k and bi,k?

(c) Now suppose that you have estimates âi,k and b̂i,k for ai,k and bi,k, respectively. Provide
a sketch of the decision regions for the case when K = 2 (binary classification). Make
sure to consider all potential cases.

3. The Federalist Papers and Näıve Bayes. In this problem you will explore the use of
Näıve Bayes classification applied to a classic text processing problem. Specifically, one of the
first usages of the Näıve Bayes approach concerned what is known as the author attribution
problem. Here we will tackle a particularly famous instance: who wrote the Federalist Papers?

The Federalist Papers were a series of essays written in 1787–1788 meant to persuade the
citizens of the State of New York to ratify the Constitution and which were published anony-
mously under the pseudonym “Publius”. In later years the authors were revealed as Alexander
Hamilton, John Jay, and James Madison. However, there is some disagreement as to who
wrote which essays. Hamilton wrote a list of which essays he had authored only days before
being killed in a duel with then Vice President Aaron Burr. Madison wrote his own list many
years later, which is in conflict with Hamilton’s list on 12 of the essays. Since by this point
the two (who were once close friends) had become bitter rivals, historians have long been
unsure as to the reliability of both lists.

We will try to settle this dispute using a simple Näıve Bayes classifier. You will need to
download the documents which are in the file fedpapers_split.txt as well as some starter
code in fedpapers.py, both located on the course website. The file fedpapers.py loads the
documents and builds a “bag of words” representation of each document. Your task is to
complete the missing portions of the code and to determine your best guess as to who wrote
each of the 12 disputed essays.

Submit your code along with your answer as to how many of the essays you think were
written by Hamilton and how many were by Madison. (Note that there isn’t actually a
verifiably correct answer here, but there is an answer that has gained broad acceptance
among historians.)

4. Perceptron learning algorithm. In this problem we are going to prove that the perceptron
learning algorithm (PLA) will eventually converge to a linear separator for a separable data
set. We will analyze the algorithm assuming for simplicity that the starting point for the
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algorithm is given by θ0 = 0. In the version that we will analyze here, we will suppose that
for iterations j ≥ 1, the algorithm proceeds by setting

θj = θj−1 + yij x̃ij ,

where (x̃ij , yij ) is any input/output pair in the training data that is mislabeled by the classifier

defined by θj−1. The general approach of the proof will be to argue that for any θ∗ which
separates the data, we can show that in a sense θj and θ∗ get more “aligned” as j grows, and
that this ultimately yields an upper bound on how many iterations the algorithm can take.

(a) Suppose that θ∗ is normalized so that

ρ = min
i

|⟨θ∗, x̃i⟩|

calculates the distance from the hyperplane defined by θ∗ to the closest xi in the training
data. Argue that

min
i

yi⟨θ∗, x̃i⟩ = ρ > 0.

(b) Show that ⟨θj ,θ∗⟩ ≥ ⟨θj−1,θ∗⟩ + ρ, and conclude that ⟨θj ,θ∗⟩ ≥ jρ. [Hint: Use
induction.]

(c) Show that ∥θj∥22 ≤ ∥θj−1∥22 + ∥x̃ij∥22. [Hint: Use the fact that x̃ij was misclassified by

θj−1.]

(d) Show by induction that ∥θj∥22 ≤ j(1 +R2), where R = maxi ∥xi∥2.
(e) Show that (b) and (d) imply that

j ≤ (1 +R2)∥θ∗∥22
ρ2

.

[Hint: Use the Cauchy-Schwartz inequality.]

5. Unconstrained soft margin classifier. Let L(x) = max(0, c− x) for some c > 0.

(a) Sketch L(x); make sure that c is labeled clearly on your plot.

(b) We have been finding the optimal soft margin classifier by solving a constrained quadratic
program.2 In this problem, I want you to argue that there is an equivalent unconstrained
formulation of the form:

minimize
w,b

1

2
∥w∥22 +

n∑
i=1

L(?).

In other words, fill in the question mark, indicate a value for c, and then argue that this
unconstrained problem is equivalent to the original constrained quadratic program we
used to describe the optimal soft margin classifier in Lecture 12.

2Both the original primal problem and the dual problem can be expressed as particular instances of the general
class of constrained quadratic programs. Read the supplemental notes for more details.
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6. Kernels. In the notes I provided on kernels, we proved that if the function k(u,v) is
a symmetric and positive semi-definite kernel, then it is an “inner product kernel” (i.e.,
there is a Hilbert space H with inner product ⟨·, ·⟩ and a map Φ : Rd → H such that
k(u,v) = ⟨Φ(u),Φ(v)⟩). Show that the converse is also true: an inner product kernel must
be positive semi-definite. (This direction is much easier.)
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