
ECE 6254, Spring 2022

Homework # 3

Due Sunday, February 18, at 11:59pm EST.

Suggested reading:

� Elements of Statistical Learning (by Hastie, Tibshirani, and Friedman): Section 3.2 (pages
44–56) discusses least squares regression; Section 3.4 (pages 61–79) covers ridge regression
and the Lasso.

� Learning from Data (by Abu-Mostafa, Magdon-Ismail, Lin): Section 3.2 (pages 82–88) con-
tains an alternative introduction to linear regression.

Problems:

1. In this problem, we will consider a simple learning scenario where x ∈ R and y ∈ R is given
by y = x2. In other words, h⋆(x) = x2. Assume that the input variable x is an independent
sample from a normal distribution with zero mean and variance 1. Now suppose that we
are given two independent observations of input output pairs, i.e., our data set is given by
D = {(x1, x21), (x2, x22)}.

(a) Suppose our hypothesis set consists of horizontal lines, i.e., H : h(x) = b. We will fit

the line by setting hD(x) =
y1+y2

2 =
x2
1+x2

2
2 . For this case, analytically derive the average

hypothesis

h̄(x) = ED[hD(x)] (1)

(b) Next, analytically compute the bias, i.e.,

EX

[(
h̄(X)− h⋆(X)

)2]
(2)

(c) Now, analytically compute the variance

EX

[
ED

[(
hD(X)− h̄(X)

)2]]
(3)

2. Suppose that we are given a dataset D = {(x1, y1), . . . , (xn, yn)} where each pair (xi, yi) is an
independent realization of a random vector X in Rd and a random variable Y in R satisfying

Y = X⊤β⋆ +N,

where N represents noise that is independent of X and satisfies E[N ] = 0 and var(N) = σ2.
In this scenario, β⋆ ∈ Rd represents the parameters of the function

h⋆(x) = xTβ⋆

that would minimize the expected squared error.
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(a) Compute the “noise variance” term in the bias-variance decomposition, i.e., compute
R(h⋆) = E[(Y − h⋆(X))2]?

(b) Now consider the function hD formed from the least squares regression estimate. Specif-
ically, if X is the n × d matrix whose ith row is xT

i and y ∈ Rn contains y1, . . . , yn,
then

hD(x) = x⊤(X⊤X)−1X⊤y.

Compute the “average hypothesis”

h̄(x) = ED[hD(x)] = ED[x
⊤(X⊤X)−1X⊤y].

To do this, it is helpful to express y using y = Xβ⋆ + n, where n ∈ Rn. When taking
the expectation with respect to D, you should be thinking of both X and n as being
random. (Hint: Remember that X and n are independent.)

(c) Using the result of the previous problem, compute the bias EX [(h̄(X)− h⋆(X))2].

(d) Next we wish to compute the variance

EX

[
ED[(hD(X)− h̄(X))2]

]
.

First show that

ED[(hD(X)− h̄(X))2] = σ2X⊤ED

[
(X⊤X)−1

]
X.

Computing ED
[
(X⊤X)−1

]
is not straightforward, but note that X⊤X =

∑n
i=1 xix

T
i

is simply a scaled version of what looks like an empirical estimate of the matrix CX =
EX [XX⊤]. Using the approximation X⊤X ≈ nCX , compute an approximation for the
variance. Your answer should only involve the dimensions d and n and the variance σ2.
(Hint: Write this in terms of the trace of a matrix and recall properties of the trace.)

(e) From the discussion in class, we have that

E [R(hD)] = noise variance + bias + variance,

thus, from the problems above we can form a simple approximate estimate of the ex-
pected risk. This represents the expected error when applying our least squares regres-
sion estimate to a new sample (x, y) not seen in the training data. In this part we will
contrast this with the expected error on the training data itself. Specifically, compute

E
[
R̂n(hD)

]
= E

[
1

n
∥y −X(X⊤X)−1X⊤y∥22

]
.

Here, the expectation is with respect to the data, i.e., both X and y (or equivalently, X
and n). Your final answer should only involve the dimensions d and n and the variance
σ2. (Hint: One can show (you don’t need to, but may want to try!) that for any matrix
P that satisfies P 2 = P , trace(P ) = rank(P ). An implication of this fact is that the
trace of a matrix that projects onto a subspace is equal to the dimension of the subspace.)

(f) Make a representative sketch of your approximation of E [R(hD)] and what you computed

for E
[
R̂n(hD)

]
in the previous problem as a function of the number of data points n.

On the vertical axis, label the value σ2.
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3. Modern datasets often contain data points corrupted by heteroscedastic noise, meaning some
of the collected data points are noisier than others. One scenario where this phenomena may
occur is using sensor arrays of various quality to collect data; each sensor array produces a
d-dimensional measurement, but sensor arrays composed of higher quality sensors may result
in less noisy measurements compared to sensor arrays composed of cheaper sensors.

If we know our measurements contain heteroscedastic noise, we should be able to take the
fact that the noise level varies across samples into account when performing PCA. One way to
combat this phenomena is by using weighted PCA. Given a set of data points x1, . . . ,xn ∈ Rd,
we want to solve

minimize
µ,X,{zi}

n∑
i=1

αi∥xi − µ−Xzi∥22 subject to X⊤X = I, (4)

where {αi} are a set of scalar weights that we get to choose. In this problem, we will derive
the weighted PCA solution following the lecture notes.

(a) Keeping µ and X fixed, derive a closed form solution for {ẑi}.
(b) Using the above expression for ẑi, find an expression for µ̂.

(c) Now, assuming without loss of generality that µ = 0, derive an expression for X̂.

(d) Describe, briefly, the what each of two various weighting schemes is doing, and discuss
any disadvantages:

� Binary weights: For each data point xi, we pick αi ∈ {0, 1}.
� Inverse noise standard deviation weights: If the variance of the noise corre-
sponding to data point xi is σ

2
i (e.g., the noise follows distribution Normal(0, σ2

i I)),
then we pick αi =

1
σi
.

4. In class we discussed ridge regression and the LASSO. Another form of regularized least
squares regression involves the so-called elastic-net regularizer, which corresponds to the op-
timization problem

min
θ

∥y −Xθ∥22 + λ
(
α∥θ∥22 + (1− α)∥θ∥1

)
,

where both λ and α are scalar parameters set by the user. The elastic-net regularizer can
be viewed as a compromise between the ℓ2 and ℓ1 penalties, being prone to both selecting
variables (like the LASSO) and shrinking together the coefficients of correlated predictors
(like ridge regression). Argue that another way to view the elastic-net optimization problem
is as a LASSO optimization problem with an augmented version of y and X. Specifically,
show that you can write this in the form

min
θ

∥ỹ − X̃θ∥22 + λ∥θ∥1.
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5. In this problem we consider the scenario described in class where x is drawn uniformly on
[−1, 1] and y = sin(πx) and we are again given n = 2 training samples. Here we will
consider an alternative approach to fitting a line to the data based on Tikhonov regularization.
Specifically, we let

y =

[
y1
y2

]
X =

[
1 x1
1 x2

]
θ =

[
b
a

]
.

We will then consider Tikhonov regularized least squares estimators of the form

θ̂ = (X⊤X + Γ⊤Γ)−1X⊤y. (5)

(a) How should we set Γ to reduce this estimator to fitting a constant function (i.e., finding
an h(x) of the form h(x) = b)? (Hint: For the purposes of this problem, it is sufficient
to set Γ in a way that just makes a ≈ 0. To make a = 0 exactly requires setting Γ in a
way that makes the matrix X⊤X + Γ⊤Γ singular — but note that this does not mean
that the regularized least-squares optimization problem cannot be solved, you must just
use a different formula than the one given in (5).)

(b) How should we set Γ to reduce this estimator to fitting a line of the form h(x) = ax+ b
that passes through the observed data points (x1, y1) and (x2, y2)?

(c) Use the same approach as in the previous problem to numerically estimate the bias and
variance for (at least approximations of) both of these estimators, and confirm that your
estimates correspond to the numbers I provided in class.

(d) Play around and see if you can find a matrix Γ that results in a smaller risk than either
of the two approaches we discussed in class. Report the Γ that gives you the best results.
(You can restrict your search to diagonal Γ to simplify this.)

6. In this problem we will compare the performance of traditional least squares, ridge regression,
and the LASSO on a real-world dataset. We will use the “California Housing Prices” dataset
which contains the median sale price of owner occupied homes in about 20,640 different
neighborhoods in California, along with 8 features for each home that might be relevant.
These features include factors such as measures of income, age of the house, number of
rooms/bedrooms, etc. To get this dataset in Python, simply type

from sklearn.datasets import fetch_california_housing

california = fetch_california_housing()

X = california.data

y = california.target

In order to judge the quality of each approach, you should split the dataset into a training
set and a testing set. The training set should consist of 1,000 observations, and you can use
the remaining observations for testing.

Before training any of these algorithms, it is a good idea to “standardize” the data. By this, I
mean that you should take each feature (i.e., each column of the matrix X) and subtract off its
mean and divide by the standard deviation to make it zero mean and unit variance. Otherwise,
the regularized methods will implicitly be placing bigger penalties on using features which
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just happen to be scaled to have small variance. You should determine how to “standardize”
your training data by appropriately shifting/scaling each feature using only the training data,
and then apply this transformation to both the training data and the testing data so that
your learned function can readily be applied to the test set.

For all parts of the problem below, I would like you to submit your code.

(a) First, I would like you to evaluate the performance of least squares. You should imple-
ment this yourself using the equation we derived in class. Report the performance of
your algorithm in terms of mean-squared error on the test set, i.e.,

1
ntest

∥ytest −Xtestθ̂∥22.

(b) Next, using the formula derived in class, implement your own version of ridge regression.
You will need to set the free parameter λ. You should do this using the training data in
whatever manner you like (e.g., via a holdout set) – but you should not allow the testing
dataset to influence your choice of λ. Report the value of λ selected and the performance
of your algorithm in terms of mean-squared error on the test set.

(c) Finally, I would like you to evaluate the performance of the LASSO. You do not need to
implement this yourself. Instead, you can use scikit-learn’s built in solver via

from sklearn import linear_model

reg = linear_model.Lasso(alpha = ???)

reg.fit(Xtrain,ytrain)

reg.predict(Xtest)

Above, alpha corresponds to the λ parameter from the lecture notes. As in part (b), you
will need to do something principled to choose a good value for this parameter. Report
the value of alpha used in your code, the performance of your algorithm in terms of
mean-squared error, and the number of nonzeros in θ. (You can get θ via reg.coef .)
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