
ECE 6254, Spring 2024

Homework # 1

Due Wednesday, January 24, at 11:59pm.

Suggested reading:

� Elements of Statistical Learning (by Hastie, Tibshirani, and Friedman): Chapter 1 (pages
1-8).

� Learning from Data (by Abu-Mostafa, Magdon-Ismail, Lin): Chapter 1. This covers much
of the same ground we did in our “First look at generalization”, and does so in a very
conversational manner.

� “Introduction to Statistical Learning Thoery” by Bousquet, Boucheron, and Lugosi: Sections
1-3 (first 13 pages). Ignore Section 2.1 for now. The beginning of this paper provides an
overview of using concentration bounds to bound the performance of empirical risk mini-
mization in the context of a finite set of hypotheses. You can download the paper on the
course web page.

� Course notes which I will hopefully post on the course website within the next couple of days.

Problems:

1. Suppose that we have some number m of coins. Each coin has the same probability of landing
on heads, denoted p. Suppose that we pick up each of the m coins in turn and for each coin
do n independent coin tosses. Note that the probability of obtaining exactly k heads out of
n tosses for any given coin is given by the binomial distribution:

P[k|n, p] =
(
n

k

)
pk(1− p)n−k.

For each series of coin tosses, we will record the results via the empirical estimates given by

p̂i =
number of times coin i lands on heads

n
.

(a) Assume that n = 10. If all the coins have p = 0.05, compute a formula for the exact
probability that at least one coin will have p̂i = 0. (This may be easier to calculate by
instead computing the probability that this does not occur.) Give a table containing
the values of this probability for the cases of m = 1, m = 1, 000, and m = 1, 000, 000.
Repeat for p = 0.75.

(b) Now assume that n = 10, m = 2, and that p = 0.5 for both coins. Compute (exactly,
via a formula) and then plot/sketch

P
[
max

i
|p̂i − p| > ϵ

]
as a function of ϵ ∈ [0, 1]. (Note that if n = 10, p̂i can take only 11 discrete values, so
your plot will have discrete jumps at certain values as ϵ changes.) On the same plot,
show the bound that results from applying the Hoeffding inequality together with the
union bound.
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2. (a) Suppose that X is a Gaussian random variable with zero mean and variance σ2:

fX(x) =
1√
2πσ

e−x2/2σ2
.

Find a tail bound for X using the Chernoff bounding method (see page 11 of the notes
on concentration inequalities for lecture 2). In other words, fill in the right hand side
below with an expression that depends on t (and σ2):

P [X > t] ≤ ???.

To make this bound as good as possible, optimize over your choice of λ. Expressions
for the moment generating function of a Gaussian random variable are easy to come by
(e.g., in the “Normal distribution” entry in Wikipedia).

(b) Suppose that X1, X2, . . . , Xm are iid Gaussian random variables with mean 0 and vari-
ance σ2. Using your answer for part (a) and the union bound, find a bound for

P
[

max
i=1,...,m

Xi > t

]
≤ ???.

(c) For Xi as in part (b), complete the following sentence: With probability at least 0.9,

max
i=1,...,m

Xi ≤ ???.

(d) Using Python, create histograms for the random variable

Z = max
i=1,...,m

Xi, Xi ∼ Normal(0, 1),

for m = 10β for β = 3, 4, 5, 6. The code in hist-example.py should help you get started.
Discuss in the context of your answer to part (c). Turn in plots of your histograms along
with your comments.

3. In classification, we typically want to minimize the empirical risk on the training set. This
can be represented as minimizing a “loss function” applied to our training data where here
the loss function corresponds to the 0/1 loss: ℓ(f(x), y) = 1{f(x) ̸= y}. In this case the
empirical risk of any f is simply given by

R̂n(f) =
n∑

i=1

ℓ(f(xi), yi).

In this problem we will consider the effect of instead minimizing an asymmetric loss function:

ℓα,β(f(x), y) = α1{f(x) = 1, y = 0}+ β1{f(x) = 0, y = 1}.

Under this loss function, the two types of error receive different weights, determined by
α, β > 0.
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(a) Determine the Bayes optimal classifier for this loss function, i.e., assuming that the
distribution of (X,Y ) is known, what is the classifier that minimizes the expected loss
E[ℓα,β(f(X), Y )] where α, β > 0.

(b) Suppose that the class y = 0 is extremely uncommon (i.e., P[Y = 0] is small). This
means that the classifier f(x) = 1 for all x will have small risk/probability of error.
We could try to put the two classes on even footing by considering the modified risk
function:

R̃(f) = P[f(X) = 1|Y = 0] + P[f(X) = 0|Y = 1].

Show that minimizing R̃(f) is equivalent to choosing a certain α, β and minimizing
E ℓα,β(f(X), Y ) for this specific α, β.

4. Consider a binary classification problem involving a single (scalar) feature x and suppose that
X|Y = 0 and X|Y = 1 are continuous random variables with densities given by

fX|Y (x|0) =

{
e−x x ≥ 0

0 otherwise,

fX|Y (x|1) =

{
1 x ∈ [a, a+ 1]

0 otherwise,

respectively, where a ≥ 0 is given. Furthermore, suppose that P[Y = 0] = P[Y = 1] = 1
2 .

(a) Sketch fX|Y (x|0) and fX|Y (x|1).
(b) Derive and state the optimal classification rule (in terms of minimizing the probability

of error/risk).

(c) Calculate the Bayes risk for this classification problem in terms of the parameter a.

(d) Suppose that we do not know the true value of parameter a but have an estimate
â. Determine the risk for the classifier that results from replacing a with â in the
classification rule you derived in part (b), i.e., assume that the data is still generated
according to the distributions fX|Y (x|0) and fX|Y (x|1), but we use the classification rule
based on â. (Your answer should be in terms of a and the estimate â, and you may
assume that â ≥ 0.)

(e) Suppose that we are given a guarantee that P[|a − â| ≥ ϵ] ≤ δ for some ϵ ∈ (0, 1)
and δ ∈ (0, 1). Give an upper bound on worst-case possible risk in terms of only the
quantities we know (i.e., â, ϵ, and δ, but not a.) [Hint: Break up the problem into two
cases depending on |a− â| and calculate the worst-case risk under either scenario.]

5. In this problem we will explore nearest neighbor classification in Python.

The file knn-example.py provides a good start at this. You should be able to run this
simply by typing python knn-example.py in your favorite terminal. This uses the NumPy,
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Matplotlib, and scikit learn python packages. These should come included in the standard
Anaconda distribution, but if you don’t have them you will need to install them first.

The file begins by loading the appropriate packages and fixing the random seed so that your
results will be repeatable. It then generates a simple 2-dimensional dataset with n datapoints
from two possible classes. Next it builds a k-nearest neighbor classifier. Finally, it plots the
results. Before going further, spend some time with this and try to understand what the code
is doing.

In this problem I would like you to design a k-nearest neighbor classifier for several different
values of n. In particular, I would like you to consider n = 100, 500, 1000, 5000. For each of
these values of n, experiment with different choices of k and decide what the “best” choice of
k is for each of these values of n (either based on the visual results, or using some quantitative
method of your own devising). Provide a table showing your choices of k, and include a plot
of the resulting classifier for each value of n.
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