
Kernel Methods

This set of notes is a brief tutorial on what are often called “kernel methods” in estimation
and in machine learning.

1. From linear to nonlinear

Much of the second half of this class has been about applications of and algorithms for
solving linear inverse problems, in which we are given observations y1, . . . , yM (denoted by a
vector y ∈ RM) and a model y = Aθ + ε, where A is an M ×N matrix, ε is random noise,
and θ ∈ RN is some object of interest that we want to estimate.1

To help motivate our topic, we will recast the problem slightly as a function estimation
problem (which relates to the theme of the first half of the class). We can think of our
observations yi as (noisy) samples f(ai) + εi of the linear function

f(x) = 〈x, θ〉.

Under this model, finding θ is equivalent to finding f .

These linear function models are very powerful and widely used in part because they are, by
now, very well-studied and well-understood. However, it is an inconvenient fact of life that
many important real-world processes are nonlinear.2
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Figure 1: A good linear regression problem and a not-so-linear problem.

We would like to be able to study nonlinear models while still being able to use some of the
powerful machinery that we have developed for linear models. The key notion that allows
us to begin to do this is that our function evaluations in a linear model are inner products.

2. Kernels

Our first step up in complexity is to consider a model of the form

f(x) = 〈Φ(x), θ〉H,
1We do not use the usual notation x ∈ RN to avoid confusion later, when x is a point at which we evaluate
a function.

2This is a very good thing. For example, those with an electrical/electronics engineering background may
recall that semiconductor devices are useful precisely because they are nonlinear.

Georgia Tech ECE 6250, Fall 2019. Notes by Andrew McRae 1



Kernel Methods

where now the inner product is happening in some Hilbert space H, and Φ is a nonlinear
transformation from the domain of the function to H.

An object that will (perhaps surprisingly) be crucial is the kernel function

k(x, y) = 〈Φ(x),Φ(y)〉H.

From the basic properties of the inner product, two important properties of k emerge:

• Symmetry: k(x, y) = k(y, x).

• Positive definiteness: for any k points x1, . . . , xk, and any vector z ∈ Rk,

k∑
i,j=1

zizjk(xi, xj) ≥ 0.

Another way to interpret this is that the “kernel matrix” K given by Kij = k(xi, xj)
is positive semidefinite.

At this point, we have little idea of what the functions Φ and k should be. However,
it turns out that we can actually reverse the process described above: given a symmetric,
positive definite kernel k, we can define its reproducing kernel Hilbert space (often abbreviated
RKHS) H to be a Hilbert space of functions with a very special property: for any f ∈ H,
f(x) = 〈f, k(·, x)〉H. Here, k(·, x) is shorthand for treating k(y, x) as a function of y with x
fixed.

In this framework, the map Φ from above is given by Φ(x) = k(·, x), and the parameter θ is
simply the function f itself.

The assumption f ∈ H, although much looser than assuming f is linear, is still fairly
restrictive. Loosely speaking, a function f ∈ H is one that can be built up as a linear
combination of kernel functions:

f(z) =
k∑

i=1

aik(z, x).

There are many commonly-used positive definite kernels; there is a very close connection
between the kernel function k and what functions lie in its corresponding RKHS H, so the
choice of kernel often depends on what kind of function we are expecting to estimate. Two
common examples are the following:

• Gaussian radial basis function: k(x, y) = exp
(
−‖x−y‖22

`2

)
, where ` is a scaling parame-

ter. These are good for representing very smooth functions.

• Polynomial kernel: k(x, y) = (1+〈x, y〉)n. All degree-n polynomials can be represented
by this kernel.
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Figure 2: Gaussian RBF on R, centered at 0, with different scale parameters.

3. Regression with Kernels

Now that we have built up a rather abstract framework for nonlinear function models, how
is it useful in practice? Given f ∈ H we will consider how to estimate it given (potentially
noisy) observations yi = f(xi) + εi.

We can write f(xi) = 〈gi, f〉H, where we have abbreviated gi = k(·, xi). We aggregate these
observations into the measurement operator A : H → RM given by

A f =

 f(x1)
...

f(xM)

 =

 〈g1, f〉
...

〈gM , f〉


We try to estimate f by the following Tikhonov regularization problem:

min
f ′∈H

N∑
i=1

(yi − 〈gi, f ′〉)2 + δ‖f ′‖2H = min
f ′∈H

‖y −A f ′‖22 + α‖f ′‖2H,

where α ≥ 0 is a regularization parameter (large α means a smoother function estimate).
We can solve this optimization problem by setting the gradient of the objective function F
equal to 0:

∇F = 2αf − 2A∗(y −A f) = 0. (1)

If you’ve seen a little bit of matrix calculus, this is the expected formula if A were a matrix.
The adjoint operator to A, which we have denoted A∗ : : RM → H, is analogous to the
transpose of a matrix: we have 〈z,Ah〉 = 〈A∗ z, h〉H for any z ∈ RM and h ∈ H. For our
choice of A, it turns out that

A∗ z =
M∑
i=1

zik(·, xi).
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There are two standard ways to solve (1). One way is to gather all the terms involving f on
one side and solving, which results in the common ridge regression formula

f̂ = (α I +A∗A)−1A∗ y. (2)

This formula can be useful for theoretical analysis, but, since it involves the inversion of an
infinite-dimensional operator, it is not usually very tractable to compute directly. Further-
more, it is, in general, not even well-defined for α = 0, since A∗A cannot have full rank
unless H is finite-dimensional.

Instead, note that the solution f̂ to (1) must have the form

f̂(x) = (A∗ a)(x) =
N∑
i=1

aik(x, xi)

for some a ∈ RN . For any solution â to the equation

αa− (y −AA∗ a) = 0,

f̂ = A∗ â solves (1). We can solve this in terms of a as

â = (αIN +AA∗)−1y, (3)

where IN denotes the N × N identity matrix.3 Solving for â simply (or not, if N is large)
involves inverting an N ×N matrix. Note that AA∗ is just the familiar kernel matrix of the
set {gi}; its (i, j)-th entry is the inner product 〈gi, gj〉H = k(xi, xj).

Thus we have a practical algorithm for estimating a function f from a few of its samples;
the resulting estimate is a linear combination of the shifted kernel functions k(·, xi).

Finding theoretical guarantees for how good f̂ is as an estimate of f (similarly to when
we analyzed the stability of least-squares solutions) is a very active topic of research. It is
beyond the scope of this single lecture, but let me know if you are interested in learning
more.

3Note that (2) and the formula f̂ = A∗(αIN +AA∗)−1y which we have just derived both appear in the set
of notes on Tikhonov regularization. In addition, the operator A∗(AA∗)−1, which we would use if we set
α = 0, is precisely the pseudoinverse of the measurement operator A.
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