Basic Matrix Manipulations

The notes below contain simple ways to rewrite matrix-vector and matrix-matrix products that we will use repeatedly throughout the course.

Basic Notation

For an $M \times N$ matrix \boldsymbol{A}, we denote the columns as $\boldsymbol{a}_{c 1}, \ldots, \boldsymbol{a}_{c N} \in \mathbb{R}^{M}$ and the rows as $\boldsymbol{a}_{r 1}, \ldots, \boldsymbol{a}_{r M} \in$ \mathbb{R}^{N}, and so

$$
\boldsymbol{A}=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\boldsymbol{a}_{c 1} & \boldsymbol{a}_{c 2} & \cdots & \boldsymbol{a}_{c N} \\
\mid & \mid & & \mid
\end{array}\right]=\left[\begin{array}{ccc}
- & \boldsymbol{a}_{r 1}^{\mathrm{T}} & - \\
- & \boldsymbol{a}_{r 2}^{\mathrm{T}} & - \\
& \vdots & \\
- & \boldsymbol{a}_{r M}^{\mathrm{T}} & -
\end{array}\right] .
$$

We will often refer to the $\left\{\boldsymbol{a}_{r m}\right\}$ as "the rows of \boldsymbol{A} ", even though, strictly speaking, the $\left\{\boldsymbol{a}_{r m}\right\}$ are column vectors in \mathbb{R}^{N}, and it is the $\left\{\boldsymbol{a}_{r m}^{\mathrm{T}}\right\}$ that are the $1 \times N$ rows of \boldsymbol{A}.

The entries of a vector in \mathbb{R}^{N} and an $M \times N$ matrix will be denoted using brackets:

$$
\boldsymbol{x}=\left[\begin{array}{c}
x[1] \\
x[2] \\
\vdots \\
x[N]
\end{array}\right], \quad \boldsymbol{A}=\left[\begin{array}{cccc}
A[1,1] & A[1,2] & \cdots & A[1, N] \\
A[2,1] & A[2,2] & \cdots & A[2, N] \\
\vdots & & \ddots & \\
A[M, 1] & A[M, 2] & \cdots & A[M, N]
\end{array}\right] .
$$

Note that vectors \boldsymbol{x} and matrices \boldsymbol{A} are typeset in bold, while their entries $x[n]$ and $A[m, n]$ are not, since they are scalars.

Matrix-vector multiplies

We can think of the action of an $M \times N$ matrix \boldsymbol{A} on a vector $\boldsymbol{x} \in \mathbb{R}^{N}$ in one of two ways.
The first is as a series of inner products against the rows of \boldsymbol{A} :

$$
\boldsymbol{A} \boldsymbol{x}=\left[\begin{array}{c}
\boldsymbol{a}_{r 1}^{\mathrm{T}} \boldsymbol{x} \\
\boldsymbol{a}_{r 2}^{\mathrm{T}} \boldsymbol{x} \\
\vdots \\
\boldsymbol{a}_{r M}^{\mathrm{T}} \boldsymbol{x}
\end{array}\right] .
$$

The other is as a linear combination of the columns of \boldsymbol{A} :

$$
\boldsymbol{A} \boldsymbol{x}=\sum_{n=1}^{N} x[n] \boldsymbol{a}_{c n} .
$$

Matrix-matrix multiplies

Likewise, the product of an $M \times N$ matrix \boldsymbol{A} and a $N \times P$ matrix \boldsymbol{B} can be thought of as a collection of the inner products between all of the rows of \boldsymbol{A} and all of the columns of \boldsymbol{B},

$$
\boldsymbol{A} \boldsymbol{B}=\left[\begin{array}{cccc}
\boldsymbol{a}_{r 1}^{\mathrm{T}} \boldsymbol{b}_{c 1} & \boldsymbol{a}_{r 1}^{\mathrm{T}} \boldsymbol{b}_{c 2} & \cdots & \boldsymbol{a}_{r 1}^{\mathrm{T}} \boldsymbol{b}_{c P} \\
\boldsymbol{a}_{r 2}^{\mathrm{T}} \boldsymbol{b}_{c 1} & \boldsymbol{a}_{r 2}^{\mathrm{T}} \boldsymbol{b}_{c 2} & \cdots & \boldsymbol{a}_{r 2}^{\mathrm{T}} \boldsymbol{b}_{c P} \\
\vdots & \vdots & \ddots & \vdots \\
\boldsymbol{a}_{r M}^{\mathrm{T}} \boldsymbol{b}_{c 1} & \boldsymbol{a}_{r M}^{\mathrm{T}} \boldsymbol{b}_{c 2} & \cdots & \boldsymbol{a}_{r M}^{\mathrm{T}} \boldsymbol{b}_{c P}
\end{array}\right]
$$

as a sum of the rank 1 matrices formed by taking the outer product of the columns of \boldsymbol{A} with the rows of \boldsymbol{B},

$$
\boldsymbol{A} \boldsymbol{B}=\sum_{n=1}^{N} \boldsymbol{a}_{c n} \boldsymbol{b}_{r n}^{\mathrm{T}}
$$

as left action of \boldsymbol{A} on the collective columns of \boldsymbol{B},

$$
\boldsymbol{A} \boldsymbol{B}=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\boldsymbol{A} \boldsymbol{b}_{c 1} & \boldsymbol{A} \boldsymbol{b}_{c 2} & \cdots & \boldsymbol{A} \boldsymbol{b}_{c P} \\
\mid & \mid & & \mid
\end{array}\right]
$$

or as right action of \boldsymbol{B} on the rows of \boldsymbol{A}

$$
\boldsymbol{A} \boldsymbol{B}=\left[\begin{array}{ccc}
- & \boldsymbol{a}_{r 1}^{\mathrm{T}} \boldsymbol{B} & - \\
- & \boldsymbol{a}_{r 2}^{\mathrm{T}} \boldsymbol{B} & - \\
& \vdots & \\
- & \boldsymbol{a}_{r M}^{\mathrm{T}} \boldsymbol{B} & -
\end{array}\right]
$$

We again stress that these are just four different ways to write down exactly the same thing.

Second-order forms

For an $N \times N$ matrix \boldsymbol{A} and a vector $\boldsymbol{x} \in \mathbb{R}^{N}$, the quadratic form $\boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}$ can be expanded as

$$
\boldsymbol{x}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}=\sum_{m=1}^{N} \sum_{n=1}^{N} A[m, n] x[m] x[n]
$$

Similarly, for an $M \times N$ matrix \boldsymbol{A} and vectors $\boldsymbol{y} \in \mathbb{R}^{M}, \boldsymbol{x} \in \mathbb{R}^{N}$, the bilinear form $\boldsymbol{y}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}$ can be expanded as

$$
\boldsymbol{y}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{x}=\sum_{m=1}^{M} \sum_{n=1}^{N} A[m, n] y[m] x[n]
$$

Note that if \boldsymbol{D} is an $N \times N$ diagonal matrix, so $D[m, n]=0$ for $m \neq n$, then

$$
\boldsymbol{x}^{\mathrm{T}} \boldsymbol{D} \boldsymbol{x}=\sum_{n=1}^{N} D[n, n] x[n]^{2}
$$

Three matrices

Let \boldsymbol{U} be an $M \times N$ matrix, \boldsymbol{C} a $N \times P$ matrix, and \boldsymbol{W} a $P \times Q$ matrix. Then the $M \times Q$ matrix $\boldsymbol{U} \boldsymbol{C} \boldsymbol{W}$ can be written as

$$
\boldsymbol{U} \boldsymbol{C} \boldsymbol{W}=\left[\begin{array}{cccc}
\boldsymbol{u}_{11}^{\mathrm{T}} \boldsymbol{C} \boldsymbol{w}_{c 1} & \boldsymbol{u}_{r 1}^{\mathrm{T}} \boldsymbol{C} \boldsymbol{w}_{c 2} & \cdots & \boldsymbol{u}_{r_{1}}^{\mathrm{T}} \boldsymbol{C} \boldsymbol{w}_{c Q} \\
\boldsymbol{u}_{r 2}^{\mathrm{T}} \boldsymbol{C} \boldsymbol{w}_{c 1} & \boldsymbol{u}_{T 2}^{\mathrm{T}} \boldsymbol{C} \boldsymbol{w}_{c 2} & \cdots & \boldsymbol{u}_{r 2}^{\mathrm{T}} \boldsymbol{C} \boldsymbol{w}_{c Q} \\
\vdots & & \ddots & \\
\boldsymbol{u}_{r M}^{\mathrm{T}} \boldsymbol{C} \boldsymbol{w}_{c 1} & \boldsymbol{u}_{r M}^{\mathrm{T}} \boldsymbol{C} \boldsymbol{w}_{c 2} & \cdots & \boldsymbol{u}_{r M}^{\mathrm{T}} \boldsymbol{C} \boldsymbol{w}_{c Q}
\end{array}\right],
$$

or

$$
\boldsymbol{U} \boldsymbol{C} \boldsymbol{W}=\sum_{n=1}^{N} \sum_{p=1}^{P} C[n, p] \boldsymbol{u}_{c n} \boldsymbol{w}_{r p}^{\mathrm{T}}
$$

In the special case where \boldsymbol{C} is square and diagonal

$$
\boldsymbol{C}=\left[\begin{array}{llll}
c_{1} & & & \\
& c_{2} & & \\
& & \ddots & \\
& & & c_{N}
\end{array}\right]
$$

then the above reduces to

$$
\boldsymbol{U} \boldsymbol{C} \boldsymbol{W}=\sum_{n=1}^{N} c_{n} \boldsymbol{u}_{c n} \boldsymbol{w}_{r n}^{\mathrm{T}}
$$

