
The Kalman Filter

The RLS algorithm for updating the least squares estimate given a
series of vector observations looked like a “filter”: new data comes
in, and we use it (along with collected knowledge of the old data) to
produce a new output.

In the previous section, x∗ was fixed for the entire sequence of ob-
servations. The Kalman filter incorporates dynamics for the
unknown vector x into our estimation framework. It addresses the
case where x changes from observation to observation in a manner
which we can model.

The classic example is trying to estimate the position and velocity
of an airplane. If the plane is in motion, these will of course change
over time. But the path of the plane is somewhat predictable, and
there are real physical constraints on how quickly it can turn and/or
accelerate.

Our dynamical models will be linear. That is, we will assume that we
can approximate the solution at the next time step xk+1 by applying
a known N ×N matrix F k to the current solution:

xk+1 ≈ F kxk.

Here is a quick example of how this might work. Suppose that we are
trying to estimate the position p and velocity v of a particle traveling
in one dimension:

54

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 0:25, November 25, 2019

p

v

In this case, our unknowns are a two-vector:

xk =

[
pk
vk

]
.

If we expect the velocity to be almost the same from measurement
to measurement, our dynamics equations would look like

pk+1 = pk + αkvk (+ error)

vk+1 = vk (+ error),

where αk would be proportional to the time elapsed between k + 1
and k. In terms of the xk, we can write

xk+1 = F kxk, where F k =

[
1 αk
0 1

]
.

Setting up the system

As before, we are making noisy observations of an unknown vector:

yk = Akxk + ek, ek = “measurement error”.

There can be a different number of measurements at each step, but
all of the xk have length N . We will say that yk ∈ RMk and the Ak

are Mk ×N matrices.

The xk are dynamic; we model the transition from step k to k + 1
using

xk+1 = F kxk + εk, εk = “state error”.

55

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 0:25, November 25, 2019

The F k are all N ×N .

It is possible to incorporate the correlation structure of the ek and εk
into our estimates, but we will start with the standard least-squares
framework.

Notation: Since the xk are linked together through the dynami-
cal model, the measurements yk = Akxk + ek also give us indirect
information about x0, . . . ,xk−1. As such, our estimate of all of
x0, . . . ,xk will change at time k. We will use the notation

x̂`|k = least-squares estimate of x` at time k.

Step k = 0. We have observed

y0 = A0x0 + e0.

We form the least-squares estimate

x̂0|0 = (AT
0A0)

−1AT
0y0.

Step k = 1. We have the following system of equations

y0 = A0x0 + e0
0 = F 0x0 − x1 + ε0
y1 = A1x1 + e1.

We can write this compactly as y = A1x + e1, wherey0

0
y1


︸ ︷︷ ︸
y
1

=

A0 0
F 0 −I
0 A1


︸ ︷︷ ︸

A1

[
x0

x1

]
︸ ︷︷ ︸
x1

+

e0ε0
e1


︸ ︷︷ ︸
e1

.

56

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 0:25, November 25, 2019

This system is (M0 +N +M1)× 2N ; we can form the least-squares
estimate using [

x̂0|1
x̂1|1

]
= (AT

1A1)
−1AT

1y1
.

Step k = 2. Now we have the following system of equations

y0 = A0x0 + e0
0 = F 0x0 − x1 + ε0
y1 = A1x1 + e1
0 = F 1x1 − x2 + ε1
y2 = A2x2 + e2,

which we can rewrite as
y0

0
y1

0
y2


︸ ︷︷ ︸
y
2

=


A0 0 0
F 0 −I 0
0 A1 0
0 F 1 −I
0 0 A2


︸ ︷︷ ︸

A2

x0

x1

x2


︸ ︷︷ ︸
x2

+


e0
ε0
e1
ε1
e2


︸ ︷︷ ︸
e2

.

This system is (M0 +M1 +M2 + 2N)× 3N ; we can form the least-
squares estimate usingx̂0|2

x̂1|2
x̂2|2

 = (AT
2A2)

−1AT
2y2

.

57

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 0:25, November 25, 2019

In general, we have

Ak =



A0

F 0 −I
A1

F 1
. . .

F k−1 −I
Ak


, y

k
=



y0

0
y1

0
...
0
yk


; (1)

this system is (M0 + · · · + Mk + kN) × (k + 1)N , and we can for
the least-squares estimate using

x̂0|k
x̂1|k

...
x̂k|k

 = (AT
kAk)

−1AT
kyk.

The (k + 1)N -vector AT
kyk is

AT
kyk =


AT

0y0

AT
1y1
...

AT
kyk

 ,
while the (k + 1)N × (k + 1)N matrix AT

kAk we have to invert is

AT
0A0 + F

T
0F 0 −F T

0 0
−F 0 I+AT

1A1 + F
T
1F 1 −F T

1

0 −F 1 I+AT
2A2 + F

T
2F 2 −F T

2
...

. . .

I+AT
k−1Ak−1 + F

T
k−1F k−1 −F T

k−1

−F k−1 I+AT
kAk


(2)

Notice that this matrix is block tridiagonal; this structure is pre-
cisely what we will exploit in deriving the efficient update equations
later on.

58

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 0:25, November 25, 2019

Example: Multiple measurements of a pulse

The following example illustrates the essential difference between the
standard least-square framework and the Kalman filter.

We make three measurements of a patient’s pulse, and want an (up-
dated) estimate of its true value after each one. Our measurements
are scalars, and have the form:

y = x + noise.

We record the three values y0, y1, y2.

In the standard least-square framework, we solve the three problems

y0 = 1x∗+e0,

[
y0
y1

]
=

[
1
1

]
x∗+

[
e0
e1

]
, and

y0y1
y2

 =

1
1
1

x∗+
e0e1
e2

 .
If we call x̂k the least-squares estimate after recording yk, a sim-
ple calculation shows that the estimate is simply the average of the
measurements we have seen to date:

x̂0 = y0, x̂1 =
y0 + y1

2
, x̂2 =

y0 + y1 + y2
3

.

Now suppose the we use the Kalman filtering framework to explicitly
recognize that the pulse can “drift” over time. Our dynamical model
is simple:

xk+1 = xk + εk.

This is saying that our best guess for the pulse at the next time step
is that it takes the same value as before, but we are incorporating
the fact that it will in fact not be exactly the same as this best guess.

59

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 0:25, November 25, 2019

In the Kalman framework, the three systems we solve look like

y0 = 1x0 + e0,y00
y1

 =

1 0
1 −1
0 1

 [x0

x1

]
+

e0ε0
e1

 ,

y0
0
y1
0
y2

 =


1 0 0
1 −1 0
0 1 0
0 1 −1
0 0 1


x0

x1

x2

 +


e0
ε0
e1
ε1
e2

 .
After the first measurement, our estimate for x0 is the same:

x̂0|0 = y0.

After the second measurement, we have

[
x̂0|1
x̂1|1

]
=

[1 1 0
0 −1 1

] 1 0
1 −1
0 1

−1 [1 1 0
0 −1 1

] y00
y1


=

([
2 −1
−1 2

])−1 [
y0
y1

]
=

[
2/3 1/3
1/3 2/3

] [
y0
y1

]

=

[
2y0+y1

3

y0+2y1
3

]

60

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 0:25, November 25, 2019

So the best guess for where the pulse was is now a weighted average
between the two samples; the estimate for x1 weighs the most recent
measurement more heavily than the first one. This is natural, since
we are saying the pulse is changing between measurements.

After the third measurement, we havex̂0|2
x̂1|2
x̂2|2

 =

 2 −1 0
−1 3 −1
0 −1 2

−1 y0y1
y2



=


5y0+2y1+y2

8

y0+2y1+y2
4

y0+2y1+5y2
8

 .
Again, we see that as a direct result of allowing the pulse to drift,
recent measurements are weighed more heavily in the current esti-
mate.

61

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 0:25, November 25, 2019

Block tridiagonal factorization

To find the least-squares estimate of x0, . . . , xN−1, we need to solve
the kN × kN system given by (2) a few pages back. In this section,
we will show how this this type of system allows a nice factorization
which makes it clear how to solve it in a “streaming” manner.

Consider the following general symmetric block tridiagonal system:

D0 C
T
0 0 · · · 0

C0 D1 C
T
1 0 · · · ...

0 C1 D2
. . .

...
. CT

k−1
0 · · · Ck−1 Dk





x0

x1
...
...

xk−1
xk


=



b0
b1
...
...
bk−1
bk


The system is (k + 1)N × (k + 1)N , and each of the Di and C i are
N ×N . Likewise, xi ∈ RN and bi ∈ RN .

The matrix on the left-hand side above as the product of block lower
triangular and block upper triangular matrices:

Q0 0 · · · 0
C0 Q1 0
0 C1 Q2

. . .
... 0
0 · · · 0 Ck−1 Qk




I U 0 0
0 I U 1 0
...

. . . U k−1
0 0 I

 ,

where the C i are the same as in the original system, and the Qi and
U i are also all N ×N . By inspecting the blocks, we see that we can
compute the Qi and U i using the following iterative algorithm:

62

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 0:25, November 25, 2019

Q0 = D0

for i = 1, 2, . . . , k
U i−1 = Q−1i−1C

T
i−1

Qi = Di−C i−1U i−1, meaning that Qi = Di−C i−1Q
−1
i−1C

T
i−1

end

If the factorization is already in place, we can solve for the xi by
using forward substitution followed by back substitution. First, we
solve 

Q0 0 · · · 0
C0 Q1 0
0 C1 Q2

. . .
... 0
0 · · · 0 Ck−1 Qk



w0

w1
...

wk

 =


b0
b1
...

bk


working from the top down:

w0 = Q−10 b0
for i = 1, 2, . . . , k

wi = Q−1i (bi −C i−1wi−1)
end

With the wi in hand, we can now solve
I U 0 0
0 I U 1 0
...

. . . U k−1
0 0 I



x0

x1
...

xk

 =


w0

w1
...

wk


for the xi by working bottom up:

63

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 0:25, November 25, 2019

xk = wk

for i = k − 1, k − 2, . . . , 0
xi = wi −U ixi+1

end

Of course, we can combine the factorization with the forward step of
the solve above to yield the following algorithm for solving symmet-
ric1 block tridiagonal systems:

Symmetric Block Tridiagonal Solve

Input: N ×N matrices D0, . . . ,Dk and C0, . . . ,Ck−1;
Right-hand side N -vectors b0, . . . , bk

Initialize: Q0 = D0

w0 = Q−10 b0

for i = 1, 2, . . . , k do

U i−1 = Q−1i−1C
T
i−1

Qi = Di −C i−1U i−1

wi = Q−1i (bi −C i−1wi−1)

end for

xk = wk

for i = k − 1, k − 2, . . . , 0 do

xi = wi −U ixi+1

end for

1This is easily adapted to non-symmetric block tridiagonal, but we only
need the symmetric case for what we do below.

64

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 0:25, November 25, 2019

Kalman filter update equations

Recalling equation (2) from earlier in these notes, we can find the
least-squares solution x̂0|k, x̂1|k, . . . , x̂k|k at step k using the tridiag-
onal solver from the previous section with

C i = −F i, i = 0, . . . , k − 1

Di =


AT

0A0 + F T
0F 0, i = 0

I +AT
i Ai + F T

i F i, i = 1, . . . , k − 1

I +AT
kAk, i = k.

That is great, but what is even better is that we can quickly move
from the current best estimate x̂k|k to the estimate at the next time
step x̂k+1|k+1 very quickly.

Suppose that we have in our hands the solution to (2), consisting of
the estimates

x̂0|k, x̂1|k, . . . , x̂k|k (3)

When the signal evolves (xk+1 = F kxk +εk) and new measurements
come in (yk+1 = Ak+1xk+1 + ek+1), we break the update into two
stages. The first is the “predict” stage, where we add the evolution
equations — we solve,

Ãk+1 =



A0

F 0 −I
A1

F 1
. . .

F k−1 −I
Ak 0
F k −I


, ỹ

k+1
=



y0

0
y1

0
...
0
yk
0


.

65

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 0:25, November 25, 2019

This system has another block column, but since the last block col-
umn in non-zero only in the k + 1 block, the xk+1 variables are

essentially decoupled. The solution to Ã
T

k+1Ãk+1x̄ = Ã
T

k+1ỹk+1
will

be exactly the same as before, i.e. (3), but with an additional com-
ponent given by

x̂k+1|k = F kx̂k|k.

We can interpret this as a prediction for x̂k+1|k+1 which we will
update when we incorporate the measuremets yk+1.

The factorization is updated with

D̃k = Dk + F T
kF k = I +AT

kA
T
k + F T

kF k

Ck = −F k

D̃k+1 = I.

How exactly this works is thoroughly detailed in the Technical Details
section below.

In the second stage, the “update” stage, we incorporate the measure-
ments and solve

Ak+1 =



A0

F 0 −I
A1

F 1
. . .

F k−1 −I
Ak 0
F k −I
0 Ak+1


, y

k+1
=



y0

0
y1

0
...
0
yk
0
yk+1



66

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 0:25, November 25, 2019

This update works by changing the last block diagonal element to

Dk+1 = D̃k+1 +AT
k+1Ak+1 = I +AT

k+1Ak+1.

we can then quickly compute x̂k+1|k+1 = wk+1 as

x̂k+1|k+1 = x̂k+1|k +Gk+1(yk+1 −Ak+1x̂k+1|k),

where Gk+1 is the “Kalman gain” matrix (this is computed below).
Notice that if the measurements yk+1 match our prediction x̂k+1|k,
then we don’t update this prediction at all — otherwise we pass the
difference through the gain matrix Gk+1 and add it to x̂k+1|k.

Here are the updating equations, which are carefully derived in the
Technical Details section:

Kalman Filter

Initialize: x̂0|0 = (AT
0A0)

−1AT
0y0

P 0|0 = (AT
0A0)

−1

for k = 0, 1, 2, . . . do

State update extrapolation: x̂k+1|k = F kx̂k|k

Info matrix extrapolation: P k+1|k = F kP k|kF
T
k + I

Kalman gain: Gk+1 = P k+1|kA
T
k+1(Ak+1P k+1|kA

T
k+1 + I)−1

State update: x̂k+1|k+1 = x̂k+1|k +Gk+1(yk+1−Ak+1x̂k+1|k)

Info matrix update: P k+1|k+1 = (I−Gk+1Ak+1)P k+1|k

end for

So the cost of moving from x̂k|k to x̂k+1|k+1 is O(N 3) +O(Mk+1N
2),

which is about the same as it would cost to simply compute the
standard least-squares solution for xk+1 using only yk+1.

67

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 0:25, November 25, 2019

System Identification

In this section, we will see how we can use least-squares to learn the
impulse response of a linear time-invariant system by observing its
input and output. We have seen already how we might set this up as a
linear inverse problem (see the example at the beginning of Chapter
II of these notes). Now, using the work we just did on recursive
least-squares, we can describe how we could solve this problem in a
streaming manner.

Specifically, suppose we observe the convolution

y[n] =
N−1∑
k=0

h∗[k]u[n− k] + noise,

where

• u[n] is the input signal (observed),

• y[n] is the output signal (observed), and

• h∗[n] is the impulse response of (finite) length N (unknown).

Our goal is to estimate h∗ ∈ RN after observing u[n] and y[n] over
some amount of time.

Note that we can equivalently write our observations as

y[n] = Anh∗ noise,

where An is the 1×N matrix

An =
[
u[n] u[n− 1] . . . u[n−N + 1]

]
= uT

n .

68

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 0:25, November 25, 2019

With all of the measurement vectors up to time M stacked up:

AM =


A0

A1
...
AM

 =


uT

0

uT
1
...
uT
M

 , y
M

=


y[0]
y[1]

...
y[M]

 ,
we could then form the least-squares estimate

ĥ = (AT
MAM)−1AT

MyM .

Alternatively, we could apply the recursive least-squares algorithm
from page 55 of these notes, giving us the following iteration (we
have moved things around to make things as efficient as possible for
this special case):

vn = P n−1un

kn =
1

1 + uT
nvn

vn

hn = hn−1 + (y[n]− uT
nhn−1)kn

P n = P n−1 − knvT
nP n−1.

Note that this algorithm is much more efficient than re-solving the en-
tire least-squares problem from scratch with each new measurement,
but it still requires a matrix-vector multiplication at each iteration.
It might be hard to imagine anything that would require even less
computation, but there are some surprisingly effective alternatives
that are even cheaper! We will talk about one particularly impor-
tant example.

69

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 0:25, November 25, 2019

Least Mean Squares (LMS) Filter

The Least Mean Squares (LMS) filter is an important algo-
rithm that is even cheaper (computationally) than recursive least-
squares. This algorithm, introduced in 1960, is also the first example
of a stochastic gradient algorithm, which is currently a hot topic
in large-scale machine learning.

One way to think of the LMS filter is as a (very rough) approxima-
tion to using steepest descent to solve our least-squares optimization
problem. To be more precise, recall that the optimization problem

minimize
h∈RN

‖AMh− yM‖
2
2.

can be solved via an iterative update of the form

hk+1 = hk + αkrk,

where
rk = AT

MyM −A
T
MAMhk.

Note that we can also write

rk =
M∑
n=0

(y[n]− uT
nhk)un (4)

Now, note that the most costly aspects of this algorithm are:

1. Computing the sum over all M terms in the gradient in (4),
and

2. Running this algorithm to convergence (requiring many itera-
tions) each time a new measurement y[n] arrives.

70

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 0:25, November 25, 2019

The LMS filter does away with both of these restrictions by taking
the following (seemingly crazy!) strategy: when a new measurement
y[n] arrives, take only a single gradient step, and ignore every term
in (4) except the one corresponding to the most recent measurement!
To be concrete, given y[n] and an existing estimate hn, we produce
an update via the iteration:

hn+1 = hn + α
(
y[n]− uTnhn

)
un.

Note that uTnhn is the output of your candidate filter whose taps are
the current weights hn. We have also fixed the stepsize.

LMS Filter

Initialize: h0 = 0

for n = 1, 2, 3, . . . do

(observe input u[n] and output y[n])

un =
[
u[n] u[n− 1] · · · u[n−N + 1]

]T
hn = hn−1 + µ (y[n]− uTnhn−1)un

end for

It can be shown that the LMS algorithm converges when the step-
size is sufficiently small (depending on the statistics of the signal
u[n]).There are also many results that give the speed of convergence
under various assumptions on the true h∗ and u[n]. In general, these
results say that to get within ε relative error, we need either ∼ 1/ε
or ∼ 1/ε2 iterations (depending on the assumptions). Notice that
this is dramatically worse than the ∼ log(1/ε) required for steepest
descent.2 But also notice that the iterations are much cheaper. Sim-

2Suppose ε = 10−3. What are log(1/ε), 1/ε, 1/ε2?

71

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 0:25, November 25, 2019

ilarly, the RLS algorithm tends to converge much more quickly than
LMS, but each iteration is much more computationally expensive.

There is now a rich literature on the generalization of LMS where you
implement steepest descent by, at each iteration, randomly selecting
only a few of the terms in the sum that computes the gradient. This
is now known as stochastic gradient descent (stochastic because the
terms are typically chosen at random) and is a big part of the success
of modern machine learning algorithms. (Computing the gradient
in many algorithms involves taking a sum over every item in your
dataset – if you start working with datasets of millions of images,
speeding this up becomes critical!)

Adaptive Filtering

In many practical settings, the impulse response may gradually (or
not so gradually!) drift over time. Both of the methods we have
described above can handle this setting as well.

First, notice that the core update in the LMS filter depends only on
the current output value and the last N input samples. This means
that by approximating the gradient with only the last term, LMS nat-
urally adapts to changing filter coefficients. The convergence results
mentioned above can be very easily translated into characterizations
of how closely we can track dynamic h∗.

To make the RLS filter more agile to dynamic h∗, we must find a
similar way to slowly forget old inputs. This can be achieved by
considering a regularized weighted least-squares problem. At time n,

72

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 0:25, November 25, 2019

we can choose hn to solves

minimize
h

n∑
m=0

λm |y[m]− uT
mh|2 + δλn‖h‖22.

This is a Tikhonov-regularized least-squares problem, where the reg-
ularization parameter is getting smaller as n increases. We can again
apply the matrix inversion lemma to obtain the following algorithm:

RLS Adaptive Filter

Initialize: h0 = 0, P 0 = δ−1I.

for n = 1, 2, 3, . . . do

(observe input u[n] and output y[n])

un =
[
u[n] u[n− 1] · · · u[n−N + 1]

]T
vn = P n−1un

kn = 1
λ+uT

nvn
vn

hn = hn−1 + (y[n]− uT
nhn−1)kn

P n = λ−1P n−1 − λ−1knvT
nP n−1

end for

73

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 0:25, November 25, 2019

Technical Details: Kalman Filter Updates

For the first stage of the update, the “predict stage”, the system of
equations moves from Ak in (1) to

Ãk+1 =



A0

F 0 −I
A1

F 1
. . .

F k−1 −I
Ak 0
F k −I


, ỹ

k+1
=



y0

0
y1

0
...
0
yk
0


The least-squares solution to this system will be unchanged, except
for an additional term in the k + 1st block, which we call x̂k+1|k.

With our previous factorization in hand, we have

P k|k := Q−1k

computed already. The addition of the F k above changes the Dk in
our block tridiagonal system to

D̃k = Dk + F T
kF k,

and so the factorization is updated with

Q̃k = Qk + F T
kF k

w̃k = Q̃
−1
k (bk + F k−1wk−1).

This new system also has k + 1 blocks, so we need to compute the
new terms in our running factorization: U k, Q̃k+1, and w̃k+1.

74

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 0:25, November 25, 2019

By the matrix inversion lemma

Q̃
−1
k = Q−1k −Q

−1
k F

T
k (I + F kQ

−1
k F

T
k)−1F kQ

−1
k ,

so we can rewrite w̃k as

w̃k = wk −Q−1k F
T
k (I + F kQ

−1
k F

T
k)−1F kwk.

We now have Ck = −F k and D̃k+1 = I, and b̃k+1 = 0, so we move
forward with the running factorization by solving

U k = −Q̃
−1
k F

T
k

Q̃k+1 = I− F kQ̃
−1
k F

T
k

w̃k+1 = Q̃
−1
k+1F kw̃k

= Q̃
−1
k+1(I− F kQ

−1
k F

T
k (I + F kQ

−1
k F

T
k)−1)F kwk

= Q̃
−1
k+1(I + F kQ

−1
k F

T
k)−1F kwk (5)

= F kwk (6)

where the second to last step (5) follows from the identity for sym-
metric matrices

I−A(I +A)−1 = (I +A)−1, (7)

(just multiply both sides on the right by (I +A)), and the last step
(6) follows from an application of the matrix inversion lemma

(I + F kQ
−1
k F

T
k)−1 = I− F k(Qk + F T

kF k)
−1F T

k

= I− F kQ̃
−1
k F k

= Q̃k+1.

75

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 0:25, November 25, 2019

Since w̃k+1 = x̂k+1|k and wk = x̂k|k, we can rewrite the conclusion
above as

x̂k+1|k = F kx̂k|k.

We will also denote

P k+1|k := Q̃
−1
k+1 = I + F kQ

−1
k F k

= I + F kP k|kF k.

We now go to the second stage of the update, where we add the
measurements yk+1 = Ak+1xx+1 + ek+1. We add a block row to our
system of equations; we now want to solve

Ak+1 =



A0

F 0 −I
A1

F 1
. . .

F k−1 −I
Ak 0
F k −I
0 Ak+1


, y

k+1
=



y0

0
y1

0
...
0
yk
0
yk+1


This means that we are replacing D̃k+1 = I with Dk+1 = I +
AT

k+1Ak+1 and b̃k+1 = 0 with bk+1 = AT
k+1yk+1. We update the

factor-and-solve as follows:

Dk+1 = I +AT
k+1Ak+1

Qk+1 = Q̃k+1 +AT
k+1Ak+1

wk+1 = Q−1k+1(A
T
k+1yk+1 + F kw̃k). (8)

76

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 0:25, November 25, 2019

Using the matrix-inversion lemma, we can write

Q−1k+1 = Q̃
−1
k+1 − Q̃

−1
k+1A

T
k+1(I +Ak+1Q̃

−1
k+1A

T
k+1)

−1Ak+1Q̃
−1
k+1, (9)

and so using the fact from above that w̃k+1 = Q̃
−1
k+1F kw̃k = Q̃

−1
k+1x̂k+1|k,

the two terms in the expression for wk+1 = x̂k+1|k+1 becomes

Q−1k+1F kw̃k = x̂k+1|k − Q̃
−1
k+1A

T
k+1(I +Ak+1Q̃

−1
k+1A

T
k+1)

−1Ak+1x̂k+1|k
(10)

and

Q−1k+1A
T
k+1yk+1 =

Q̃
−1
k+1A

T
k+1

(
I− (I +Ak+1Q̃

−1
k+1A

T
k+1)

−1Ak+1Q̃
−1
k+1A

T
k+1

)
yk+1

= Q̃
−1
k+1A

T
k+1

(
I +Ak+1Q̃

−1
k+1A

T
k+1

)−1
yk+1, (11)

where we have again used the identity (7). Combining (10) and (11)
with (8), we have

wk+1 = x̂k+1|k+1 = x̂k+1|k +Gk+1

(
yk+1 −Ak+1x̂k+1|k

)
,

where

Gk+1 = Q̃
−1
k+1A

T
k+1

(
I +Ak+1Q̃

−1
k+1A

T
k+1

)−1
= P k+1|kA

T
k+1

(
I +Ak+1P k+1|kA

T
k+1

)−1
.

Finally, (9) above also gives us the update

P k+1|k+1 := Q−1k+1 = (I−Gk+1Ak+1)P k+1|k.

77

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 0:25, November 25, 2019

