Streaming solutions to least-squares problems

In our discussion of least-squares so far, we have focussed on static problems: a set of measurements $\boldsymbol{y} = \boldsymbol{A}\boldsymbol{x}_0 + \boldsymbol{e}$ comes in all at once, and we use them all to estimate \boldsymbol{x}_0 .

In this section, we will shift our focus to **streaming problems**. We observe

$$egin{aligned} oldsymbol{y}_0 &= oldsymbol{A}_0 oldsymbol{x}_1 + oldsymbol{e}_0 \ oldsymbol{y}_1 &= oldsymbol{A}_1 oldsymbol{x}_2 + oldsymbol{e}_1 \ dots \ oldsymbol{y}_k &= oldsymbol{A}_k oldsymbol{x}_k + oldsymbol{e}_k \ dots \$$

At each time k, we want to form the best estimate of \boldsymbol{x}_k from the observations $\boldsymbol{y}_0, \boldsymbol{y}_1, \ldots, \boldsymbol{y}_k$ seen up to that point exploiting some known structure regarding how the \boldsymbol{x}_k are related to each other. Moreover, we would like to do this in an efficient manner. The size of the problem is growing with k — rather than resolving the problem from scratch every time, we would like a principled (and fast) way to **update** the solution when a new observation is made.

We will consider two basic frameworks:

- 1. Recursive Least Squares (RLS): The vector $\boldsymbol{x}_k = \boldsymbol{x}_*$ for all k, i.e. we are estimating a static vector \boldsymbol{x}_* .
- 2. The Kalman filter:

The vector \boldsymbol{x}_k moves at every times step, and we have a (linear) dynamical model for how it moves.

In both of these frameworks, the measurements matrices A_1, A_2, \ldots can be different, and can even have a different number of rows. We will assume that the total number of measurements we have seen at any point exceeds the number of unknowns, and if we form

$$\underline{\boldsymbol{A}}_k = egin{bmatrix} \boldsymbol{A}_0 \ \boldsymbol{A}_1 \ dots \ \boldsymbol{A}_k \end{bmatrix}$$

then $\underline{A}_{k}^{\mathrm{T}} \underline{A}_{k}$ is invertible. Generalizing what we say to rank-deficient systems is not hard, but this assumption makes the discussion easier.

The key piece of mathematical technology we need is the **matrix** inversion lemma.

The Matrix Inversion Lemma

The matrix inversion lemma shows us how the solution to a system of equations can be efficiently updated. Here we state a slightly simplified version of the result: If \boldsymbol{W} is an $N \times N$ invertible matrix and \boldsymbol{X} is an $R \times N$ matrix, then the following identity holds:

$$(\boldsymbol{W} + \boldsymbol{X}^{\mathrm{T}}\boldsymbol{X})^{-1} = \boldsymbol{W}^{-1} - \boldsymbol{W}^{-1}\boldsymbol{X}^{\mathrm{T}}(\mathbf{I} + \boldsymbol{X}\boldsymbol{W}^{-1}\boldsymbol{X}^{\mathrm{T}})^{-1}\boldsymbol{X}\boldsymbol{W}^{-1}$$

This is a special case of the Sherman-Morrison-Woodbury identity, and is straightforward to prove (see the Technical Details at the end of these notes). The point is that if \mathbf{W}^{-1} has already been calculated, then finding a solution to $(\mathbf{W} + \mathbf{X}^{\mathrm{T}}\mathbf{X})\mathbf{w} = \mathbf{v}$ costs $O(N^2R) + O(NR^2) + O(R^3)$ instead of $O(N^3)$. If R is very small compared to N, this can be a significant savings.

Updating least-squares solutions

We can apply this fact to efficiently update the solution to leastsquares problems as new measurements become available.

Suppose we have observed

$${m y}_0 = {m A}_0 {m x}_* + {m e}_0$$

and have formed the least-squares estimate

$$\widehat{\boldsymbol{x}}_0 = (\boldsymbol{A}_0^{\mathrm{T}} \boldsymbol{A}_0)^{-1} \boldsymbol{A}_0^{\mathrm{T}} \boldsymbol{y}_0.$$

Now we observe

$$\boldsymbol{y}_1 = \boldsymbol{A}_1 \boldsymbol{x}_* + \boldsymbol{e}_1,$$

where A_1 is an $M_1 \times N$ matrix with $M_1 \ll N$. Given \boldsymbol{y}_0 and \boldsymbol{y}_1 , the full least-squares estimate is formed from the system of equations

$$egin{bmatrix} oldsymbol{y}_0 \ oldsymbol{y}_1 \end{bmatrix} = egin{bmatrix} oldsymbol{A}_0 \ oldsymbol{A}_1 \end{bmatrix} oldsymbol{x}_* + egin{bmatrix} oldsymbol{e}_0 \ oldsymbol{e}_1 \end{bmatrix},$$

resulting in

$$\widehat{oldsymbol{x}}_1 = \left(oldsymbol{A}_0^{\mathrm{T}}oldsymbol{A}_0 + oldsymbol{A}_1^{\mathrm{T}}oldsymbol{A}_1
ight)^{-1} (oldsymbol{A}_0^{\mathrm{T}}oldsymbol{y}_0 + oldsymbol{A}_1^{\mathrm{T}}oldsymbol{y}_1).$$

Now let \mathbf{P}_k be the inverse of the aggregated system we would like to solve at each step:

$$\boldsymbol{P}_0 = (\boldsymbol{A}_0^{\mathrm{T}} \boldsymbol{A}_0)^{-1}$$
$$\boldsymbol{P}_1 = (\boldsymbol{A}_0^{\mathrm{T}} \boldsymbol{A}_0 + \boldsymbol{A}_1^{\mathrm{T}} \boldsymbol{A}_1)^{-1}.$$

Then using the matrix inversion lemma with $\boldsymbol{W} = \boldsymbol{A}_0^T \boldsymbol{A}_0 = \boldsymbol{P}_0^{-1}$ and $\boldsymbol{X} = \boldsymbol{A}_1$ gives us the update

$$\boldsymbol{P}_1 = \boldsymbol{P}_0 - \boldsymbol{P}_0 \boldsymbol{A}_1^{\mathrm{T}} (\mathbf{I} + \boldsymbol{A}_1 \boldsymbol{P}_0 \boldsymbol{A}_1^{\mathrm{T}})^{-1} \boldsymbol{A}_1 \boldsymbol{P}_0.$$

When the number of new measurements (rows in A_1) is small, then the system of equations $\mathbf{I} + A_1 P_0 A_1^T$ can be much easier to handle than $A_0^T A_0 + A_1^T A_1 = P_1^{-1}$. For example, suppose we see just one new measurement, so the matrix A_1 has just one row: $A_1 = a_1^T$, $a_1 \in \mathbb{R}^N$. Then

$$y_1 = \boldsymbol{a}_1^{\mathrm{T}} \boldsymbol{x}_* + e_1,$$

and

$$\widehat{\boldsymbol{x}}_1 = \left[\boldsymbol{P}_0 - \boldsymbol{P}_0 \boldsymbol{a}_1 (1 + \boldsymbol{a}_1^{\mathrm{T}} \boldsymbol{P}_0 \boldsymbol{a}_1)^{-1} \boldsymbol{a}_1^{\mathrm{T}} \boldsymbol{P}_0\right] (\boldsymbol{A}_0^{\mathrm{T}} \boldsymbol{y}_0 + y_1 \boldsymbol{a}_1).$$

Set $\boldsymbol{u} = \boldsymbol{P}_0 \boldsymbol{a}_1$. Then

$$egin{aligned} \widehat{oldsymbol{x}}_1 &= \widehat{oldsymbol{x}}_0 + y_1 oldsymbol{u} - rac{oldsymbol{a}_1^{ ext{T}} \widehat{oldsymbol{x}}_0}{1 + oldsymbol{a}_1^{ ext{T}} oldsymbol{u}} oldsymbol{u} - rac{oldsymbol{y}_1 \cdot oldsymbol{a}_1^{ ext{T}} oldsymbol{u}}{1 + oldsymbol{a}_1^{ ext{T}} oldsymbol{u}} oldsymbol{u} = \widehat{oldsymbol{x}}_0 + \left(rac{1}{1 + oldsymbol{a}_1^{ ext{T}} oldsymbol{u}} \right) (y_1 - oldsymbol{a}_1^{ ext{T}} \widehat{oldsymbol{x}}_0) oldsymbol{u}. \end{aligned}$$

Thus we can update the solution with one vector-matrix multiply (which has cost $O(N^2)$) and two inner products (with cost O(N)).

In addition, we can carry forward the "information matrix" using the update

$${m P}_1 = {m P}_0 - rac{1}{1+{m a}_1^{
m T}{m u}}{m u}{m u}^{
m T}.$$

In general (for M_1 new measurements), we have

$$egin{aligned} \widehat{oldsymbol{x}}_1 &= oldsymbol{P}_1(oldsymbol{A}_0^{\mathrm{T}}oldsymbol{y}_0 + oldsymbol{A}_1^{\mathrm{T}}oldsymbol{y}_1) \ &= oldsymbol{P}_1(oldsymbol{P}_0^{-1}\widehat{oldsymbol{x}}_0 + oldsymbol{A}_1^{\mathrm{T}}oldsymbol{y}_1), \end{aligned}$$

and since

$$\boldsymbol{P}_0^{-1} = \boldsymbol{P}_1^{-1} - \boldsymbol{A}_1^{\mathrm{T}} \boldsymbol{A}_1,$$

this implies

$$egin{aligned} \widehat{oldsymbol{x}}_1 &= oldsymbol{P}_1 \left(oldsymbol{P}_1^{-1} \widehat{oldsymbol{x}}_0 - oldsymbol{A}_1^{ ext{T}} oldsymbol{A}_1 \widehat{oldsymbol{x}}_0 + oldsymbol{A}_1^{ ext{T}} oldsymbol{y}_1
ight) \ &= \widehat{oldsymbol{x}}_0 + oldsymbol{K}_1 (oldsymbol{y}_1 - oldsymbol{A}_1 \widehat{oldsymbol{x}}_0), \end{aligned}$$

where \boldsymbol{K}_1 is the "gain matrix"

$$\boldsymbol{K}_1 = \boldsymbol{P}_1 \boldsymbol{A}_1^{\mathrm{T}}.$$

The update for \boldsymbol{P}_1 is

$$egin{aligned} oldsymbol{P}_1 &= oldsymbol{P}_0 - oldsymbol{P}_0oldsymbol{A}_1^{ ext{T}}(\mathbf{I} + oldsymbol{A}_1oldsymbol{P}_0oldsymbol{A}_1^{ ext{T}})^{-1}oldsymbol{A}_1oldsymbol{P}_0 \ &= oldsymbol{P}_0 - oldsymbol{U}(\mathbf{I} + oldsymbol{A}_1oldsymbol{U})^{-1}oldsymbol{U}^{ ext{T}}, \end{aligned}$$

where $\boldsymbol{U} = \boldsymbol{P}_0 \boldsymbol{A}_1^{\mathrm{T}}$ is an $N \times M_1$ matrix, and $\mathbf{I} + \boldsymbol{A}_1 \boldsymbol{U}$ is $M_1 \times M_1$. So the cost of the update is

- $O(M_1N^2)$ to compute $\boldsymbol{U} = \boldsymbol{P}_0\boldsymbol{A}_1^{\mathrm{T}}$,
- $O(M_1^2N)$ to compute A_1U ,
- $O(M_1^3)$ to invert¹ $(\mathbf{I} + \mathbf{A}_1 \mathbf{U})^{-1}$,
- $O(M_1^2 N)$ to compute $(\mathbf{I} + \mathbf{A}_1 \mathbf{U})^{-1} \mathbf{U}^{\mathrm{T}}$,
- $O(M_1N^2)$ to take the result of the last step and apply U,
- $O(N^2)$ to subtract the result of the last step from P_0 .

So assuming that $M_1 < N$, the overall cost is $O(M_1N^2)$, which is on the order of M_1 vector-matrix multiplies.

¹In practice, it is probably more stable to find and update a factorization of this matrix. But the cost is the same.

Recursive Least Squares (RLS)

Given

$$egin{aligned} oldsymbol{y}_0 &= oldsymbol{A}_0 oldsymbol{x}_* + oldsymbol{e}_0 \ oldsymbol{y}_1 &= oldsymbol{A}_1 oldsymbol{x}_* + oldsymbol{e}_1 \ dots \ oldsymbol{y}_k &= oldsymbol{A}_k oldsymbol{x}_* + oldsymbol{e}_k \ dots \$$

RLS is an **online algorithm** for computing the best estimate for \boldsymbol{x}_* from all the measurements it has seen up to the current time.

Recursive Least Squares
Initialize:
$$(\boldsymbol{y}_0 \text{ appears})$$

 $\boldsymbol{P}_0 = (\boldsymbol{A}_0^T \boldsymbol{A}_0)^{-1}$
 $\widehat{\boldsymbol{x}}_0 = \boldsymbol{P}_0(\boldsymbol{A}_0^T \boldsymbol{y}_0)$
for $k = 1, 2, 3, ...$ do
 $(\boldsymbol{y}_k \text{ appears})$
 $\boldsymbol{P}_k = \boldsymbol{P}_{k-1} - \boldsymbol{P}_{k-1} \boldsymbol{A}_k^T (\mathbf{I} + \boldsymbol{A}_k \boldsymbol{P}_{k-1} \boldsymbol{A}_k^T)^{-1} \boldsymbol{A}_k \boldsymbol{P}_{k-1}$
 $\boldsymbol{K}_k = \boldsymbol{P}_k \boldsymbol{A}_k^T$
 $\widehat{\boldsymbol{x}}_k = \widehat{\boldsymbol{x}}_{k-1} + \boldsymbol{K}_k (\boldsymbol{y}_k - \boldsymbol{A}_k \widehat{\boldsymbol{x}}_{k-1})$
end for

Technical Details: Matrix Inversion Lemma

The general statement of the *Sherman-Morrison-Woodbury* identity is that

$$(\boldsymbol{W} + \boldsymbol{X}^{\mathrm{T}}\boldsymbol{Y}\boldsymbol{Z})^{-1} = \boldsymbol{W}^{-1} - \boldsymbol{W}^{-1}\boldsymbol{X}^{\mathrm{T}}(\boldsymbol{Y}^{-1} + \boldsymbol{Z}\boldsymbol{W}^{-1}\boldsymbol{X}^{\mathrm{T}})^{-1}\boldsymbol{Z}\boldsymbol{W}^{-1}$$

where \boldsymbol{W} is $N \times N$ and invertible, \boldsymbol{X} and \boldsymbol{Z} are $R \times N$, and \boldsymbol{Y} is $R \times R$ and invertible.

The proof of this is straightforward. Given any right hand side $\boldsymbol{v} \in \mathbb{R}^N$, we would like to solve

$$(\boldsymbol{W} + \boldsymbol{X}^{\mathrm{T}}\boldsymbol{Y}\boldsymbol{Z})\boldsymbol{w} = \boldsymbol{v}$$
 (1)

for \boldsymbol{w} . Set

 $oldsymbol{z} = oldsymbol{Y} oldsymbol{Z} oldsymbol{w} \quad \Rightarrow \quad oldsymbol{Y}^{-1}oldsymbol{z} = oldsymbol{Z}oldsymbol{w}.$

We now have the set of two equations

$$oldsymbol{W}oldsymbol{w}+oldsymbol{X}^{ ext{T}}oldsymbol{z}=oldsymbol{v}\ oldsymbol{Z}oldsymbol{w}-oldsymbol{Y}^{-1}oldsymbol{z}=oldsymbol{0}.$$

Manipulating the first equation yields

$$\boldsymbol{w} = \boldsymbol{W}^{-1}(\boldsymbol{v} - \boldsymbol{X}^{\mathrm{T}}\boldsymbol{z}), \qquad (2)$$

and then plugging this into the second equation gives us

$$ZW^{-1}v - ZW^{-1}X^{\mathrm{T}}z - Y^{-1}z = 0$$

$$\Rightarrow z = (Y^{-1} + ZW^{-1}X^{\mathrm{T}})^{-1}ZW^{-1}v.$$
(3)

So then given any $\boldsymbol{v} \in \mathbb{R}^N$, we can solve for \boldsymbol{w} in (1) by combining (2) and (3) to get

$$w = W^{-1}v - W^{-1}X^{T}(Y^{-1} + ZW^{-1}X^{T})^{-1}ZW^{-1}v$$

As this holds for any right-hand side \boldsymbol{v} , this establishes the result.