Streaming solutions to least-squares problems

In our discussion of least-squares so far, we have focussed on static problems: a set of measurements $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}_{0}+\boldsymbol{e}$ comes in all at once, and we use them all to estimate \boldsymbol{x}_{0}.

In this section, we will shift our focus to streaming problems. We observe

$$
\begin{aligned}
\boldsymbol{y}_{0} & =\boldsymbol{A}_{0} \boldsymbol{x}_{1}+\boldsymbol{e}_{0} \\
\boldsymbol{y}_{1} & =\boldsymbol{A}_{1} \boldsymbol{x}_{2}+\boldsymbol{e}_{1} \\
\vdots & \\
\boldsymbol{y}_{k} & =\boldsymbol{A}_{k} \boldsymbol{x}_{k}+\boldsymbol{e}_{k}
\end{aligned}
$$

At each time k, we want to form the best estimate of \boldsymbol{x}_{k} from the observations $\boldsymbol{y}_{0}, \boldsymbol{y}_{1}, \ldots, \boldsymbol{y}_{k}$ seen up to that point exploiting some known structure regarding how the \boldsymbol{x}_{k} are related to each other. Moreover, we would like to do this in an efficient manner. The size of the problem is growing with k - rather than resolving the problem from scratch every time, we would like a principled (and fast) way to update the solution when a new observation is made.

We will consider two basic frameworks:

1. Recursive Least Squares (RLS):

The vector $\boldsymbol{x}_{k}=\boldsymbol{x}_{*}$ for all k, i.e. we are estimating a static vector \boldsymbol{x}_{*}.
2. The Kalman filter:

The vector \boldsymbol{x}_{k} moves at every times step, and we have a (linear) dynamical model for how it moves.

In both of these frameworks, the measurements matrices $\boldsymbol{A}_{1}, \boldsymbol{A}_{2}, \ldots$ can be different, and can even have a different number of rows. We will assume that the total number of measurements we have seen at any point exceeds the number of unknowns, and if we form

$$
\underline{\boldsymbol{A}}_{k}=\left[\begin{array}{c}
\boldsymbol{A}_{0} \\
\boldsymbol{A}_{1} \\
\vdots \\
\boldsymbol{A}_{k}
\end{array}\right]
$$

then $\underline{\boldsymbol{A}}_{k}^{\mathrm{T}} \underline{\boldsymbol{A}}_{k}$ is invertible. Generalizing what we say to rank-deficient systems is not hard, but this assumption makes the discussion easier.

The key piece of mathematical technology we need is the matrix inversion lemma.

The Matrix Inversion Lemma

The matrix inversion lemma shows us how the solution to a system of equations can be efficiently updated. Here we state a slightly simplified version of the result: If \boldsymbol{W} is an $N \times N$ invertible matrix and \boldsymbol{X} is an $R \times N$ matrix, then the following identity holds:

$$
\left(\boldsymbol{W}+\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right)^{-1}=\boldsymbol{W}^{-1}-\boldsymbol{W}^{-1} \boldsymbol{X}^{\mathrm{T}}\left(\mathbf{I}+\boldsymbol{X} \boldsymbol{W}^{-1} \boldsymbol{X}^{\mathrm{T}}\right)^{-1} \boldsymbol{X} \boldsymbol{W}^{-1}
$$

This is a special case of the Sherman-Morrison-Woodbury identity, and is straightforward to prove (see the Technical Details at the end of these notes). The point is that if \boldsymbol{W}^{-1} has already been calculated, then finding a solution to $\left(\boldsymbol{W}+\boldsymbol{X}^{\mathrm{T}} \boldsymbol{X}\right) \boldsymbol{w}=\boldsymbol{v}$ costs $O\left(N^{2} R\right)+O\left(N R^{2}\right)+O\left(R^{3}\right)$ instead of $O\left(N^{3}\right)$. If R is very small compared to N, this can be a significant savings.

Updating least-squares solutions

We can apply this fact to efficiently update the solution to leastsquares problems as new measurements become available.

Suppose we have observed

$$
\boldsymbol{y}_{0}=\boldsymbol{A}_{0} \boldsymbol{x}_{*}+\boldsymbol{e}_{0}
$$

and have formed the least-squares estimate

$$
\widehat{\boldsymbol{x}}_{0}=\left(\boldsymbol{A}_{0}^{\mathrm{T}} \boldsymbol{A}_{0}\right)^{-1} \boldsymbol{A}_{0}^{\mathrm{T}} \boldsymbol{y}_{0} .
$$

Now we observe

$$
\boldsymbol{y}_{1}=\boldsymbol{A}_{1} \boldsymbol{x}_{*}+\boldsymbol{e}_{1},
$$

where \boldsymbol{A}_{1} is an $M_{1} \times N$ matrix with $M_{1} \ll N$. Given \boldsymbol{y}_{0} and \boldsymbol{y}_{1}, the full least-squares estimate is formed from the system of equations

$$
\left[\begin{array}{l}
\boldsymbol{y}_{0} \\
\boldsymbol{y}_{1}
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{A}_{0} \\
\boldsymbol{A}_{1}
\end{array}\right] \boldsymbol{x}_{*}+\left[\begin{array}{l}
\boldsymbol{e}_{0} \\
\boldsymbol{e}_{1}
\end{array}\right],
$$

resulting in

$$
\widehat{\boldsymbol{x}}_{1}=\left(\boldsymbol{A}_{0}^{\mathrm{T}} \boldsymbol{A}_{0}+\boldsymbol{A}_{1}^{\mathrm{T}} \boldsymbol{A}_{1}\right)^{-1}\left(\boldsymbol{A}_{0}^{\mathrm{T}} \boldsymbol{y}_{0}+\boldsymbol{A}_{1}^{\mathrm{T}} \boldsymbol{y}_{1}\right) .
$$

Now let \boldsymbol{P}_{k} be the inverse of the aggregated system we would like to solve at each step:

$$
\begin{aligned}
& \boldsymbol{P}_{0}=\left(\boldsymbol{A}_{0}^{\mathrm{T}} \boldsymbol{A}_{0}\right)^{-1} \\
& \boldsymbol{P}_{1}=\left(\boldsymbol{A}_{0}^{\mathrm{T}} \boldsymbol{A}_{0}+\boldsymbol{A}_{1}^{\mathrm{T}} \boldsymbol{A}_{1}\right)^{-1} .
\end{aligned}
$$

Then using the matrix inversion lemma with $\boldsymbol{W}=\boldsymbol{A}_{0}^{T} \boldsymbol{A}_{0}=\boldsymbol{P}_{0}^{-1}$ and $\boldsymbol{X}=\boldsymbol{A}_{1}$ gives us the update

$$
\boldsymbol{P}_{1}=\boldsymbol{P}_{0}-\boldsymbol{P}_{0} \boldsymbol{A}_{1}^{\mathrm{T}}\left(\mathbf{I}+\boldsymbol{A}_{1} \boldsymbol{P}_{0} \boldsymbol{A}_{1}^{\mathrm{T}}\right)^{-1} \boldsymbol{A}_{1} \boldsymbol{P}_{0} .
$$

When the number of new measurements (rows in \boldsymbol{A}_{1}) is small, then the system of equations $\mathbf{I}+\boldsymbol{A}_{1} \boldsymbol{P}_{0} \boldsymbol{A}_{1}^{\mathrm{T}}$ can be much easier to handle than $\boldsymbol{A}_{0}^{\mathrm{T}} \boldsymbol{A}_{0}+\boldsymbol{A}_{1}^{\mathrm{T}} \boldsymbol{A}_{1}=\boldsymbol{P}_{1}^{-1}$. For example, suppose we see just one new measurement, so the matrix \boldsymbol{A}_{1} has just one row: $\boldsymbol{A}_{1}=\boldsymbol{a}_{1}^{\mathrm{T}}$, $\boldsymbol{a}_{1} \in \mathbb{R}^{N}$. Then

$$
y_{1}=\boldsymbol{a}_{1}^{\mathrm{T}} \boldsymbol{x}_{*}+e_{1},
$$

and

$$
\widehat{\boldsymbol{x}}_{1}=\left[\boldsymbol{P}_{0}-\boldsymbol{P}_{0} \boldsymbol{a}_{1}\left(1+\boldsymbol{a}_{1}^{\mathrm{T}} \boldsymbol{P}_{0} \boldsymbol{a}_{1}\right)^{-1} \boldsymbol{a}_{1}^{\mathrm{T}} \boldsymbol{P}_{0}\right]\left(\boldsymbol{A}_{0}^{\mathrm{T}} \boldsymbol{y}_{0}+y_{1} \boldsymbol{a}_{1}\right) .
$$

Set $\boldsymbol{u}=\boldsymbol{P}_{0} \boldsymbol{a}_{1}$. Then

$$
\begin{aligned}
\widehat{\boldsymbol{x}}_{1} & =\widehat{\boldsymbol{x}}_{0}+y_{1} \boldsymbol{u}-\frac{\boldsymbol{a}_{1}^{\mathrm{T}} \widehat{\boldsymbol{x}}_{0}}{1+\boldsymbol{a}_{1}^{\mathrm{T}} \boldsymbol{u}} \boldsymbol{u}-\frac{y_{1} \cdot \boldsymbol{a}_{1}^{\mathrm{T}} \boldsymbol{u}}{1+\boldsymbol{a}_{1}^{\mathrm{T}} \boldsymbol{u}} \boldsymbol{u} \\
& =\widehat{\boldsymbol{x}}_{0}+\left(\frac{1}{1+\boldsymbol{a}_{1}^{\mathrm{T}} \boldsymbol{u}}\right)\left(y_{1}-\boldsymbol{a}_{1}^{\mathrm{T}} \widehat{\boldsymbol{x}}_{0}\right) \boldsymbol{u} .
\end{aligned}
$$

Thus we can update the solution with one vector-matrix multiply (which has cost $O\left(N^{2}\right)$) and two inner products (with cost $O(N)$).

In addition, we can carry forward the "information matrix" using the update

$$
\boldsymbol{P}_{1}=\boldsymbol{P}_{0}-\frac{1}{1+\boldsymbol{a}_{1}^{\mathrm{T}} \boldsymbol{u}} \boldsymbol{u} \boldsymbol{u}^{\mathrm{T}}
$$

In general (for M_{1} new measurements), we have

$$
\begin{aligned}
\widehat{\boldsymbol{x}}_{1} & =\boldsymbol{P}_{1}\left(\boldsymbol{A}_{0}^{\mathrm{T}} \boldsymbol{y}_{0}+\boldsymbol{A}_{1}^{\mathrm{T}} \boldsymbol{y}_{1}\right) \\
& =\boldsymbol{P}_{1}\left(\boldsymbol{P}_{0}^{-1} \widehat{\boldsymbol{x}}_{0}+\boldsymbol{A}_{1}^{\mathrm{T}} \boldsymbol{y}_{1}\right),
\end{aligned}
$$

and since

$$
\boldsymbol{P}_{0}^{-1}=\boldsymbol{P}_{1}^{-1}-\boldsymbol{A}_{1}^{\mathrm{T}} \boldsymbol{A}_{1}
$$

this implies

$$
\begin{aligned}
\widehat{\boldsymbol{x}}_{1} & =\boldsymbol{P}_{1}\left(\boldsymbol{P}_{1}^{-1} \widehat{\boldsymbol{x}}_{0}-\boldsymbol{A}_{1}^{\mathrm{T}} \boldsymbol{A}_{1} \widehat{\boldsymbol{x}}_{0}+\boldsymbol{A}_{1}^{\mathrm{T}} \boldsymbol{y}_{1}\right) \\
& =\widehat{\boldsymbol{x}}_{0}+\boldsymbol{K}_{1}\left(\boldsymbol{y}_{1}-\boldsymbol{A}_{1} \widehat{\boldsymbol{x}}_{0}\right),
\end{aligned}
$$

where \boldsymbol{K}_{1} is the "gain matrix"

$$
\boldsymbol{K}_{1}=\boldsymbol{P}_{1} \boldsymbol{A}_{1}^{\mathrm{T}}
$$

The update for \boldsymbol{P}_{1} is

$$
\begin{aligned}
\boldsymbol{P}_{1} & =\boldsymbol{P}_{0}-\boldsymbol{P}_{0} \boldsymbol{A}_{1}^{\mathrm{T}}\left(\mathbf{I}+\boldsymbol{A}_{1} \boldsymbol{P}_{0} \boldsymbol{A}_{1}^{\mathrm{T}}\right)^{-1} \boldsymbol{A}_{1} \boldsymbol{P}_{0} \\
& =\boldsymbol{P}_{0}-\boldsymbol{U}\left(\mathbf{I}+\boldsymbol{A}_{1} \boldsymbol{U}\right)^{-1} \boldsymbol{U}^{\mathrm{T}},
\end{aligned}
$$

where $\boldsymbol{U}=\boldsymbol{P}_{0} \boldsymbol{A}_{1}^{\mathrm{T}}$ is an $N \times M_{1}$ matrix, and $\mathbf{I}+\boldsymbol{A}_{1} \boldsymbol{U}$ is $M_{1} \times M_{1}$. So the cost of the update is

- $O\left(M_{1} N^{2}\right)$ to compute $\boldsymbol{U}=\boldsymbol{P}_{0} \boldsymbol{A}_{1}^{\mathrm{T}}$,
- $O\left(M_{1}^{2} N\right)$ to compute $\boldsymbol{A}_{1} \boldsymbol{U}$,
- $O\left(M_{1}^{3}\right)$ to invert ${ }^{1}\left(\mathbf{I}+\boldsymbol{A}_{1} \boldsymbol{U}\right)^{-1}$,
- $O\left(M_{1}^{2} N\right)$ to compute $\left(\mathbf{I}+\boldsymbol{A}_{1} \boldsymbol{U}\right)^{-1} \boldsymbol{U}^{\mathrm{T}}$,
- $O\left(M_{1} N^{2}\right)$ to take the result of the last step and apply \boldsymbol{U},
- $O\left(N^{2}\right)$ to subtract the result of the last step from \boldsymbol{P}_{0}.

So assuming that $M_{1}<N$, the overall cost is $O\left(M_{1} N^{2}\right)$, which is on the order of M_{1} vector-matrix multiplies.

[^0]
Recursive Least Squares (RLS)

Given

$$
\begin{aligned}
& \boldsymbol{y}_{0}=\boldsymbol{A}_{0} \boldsymbol{x}_{*}+\boldsymbol{e}_{0} \\
& \boldsymbol{y}_{1}=\boldsymbol{A}_{1} \boldsymbol{x}_{*}+\boldsymbol{e}_{1} \\
& \vdots \\
& \boldsymbol{y}_{k}=\boldsymbol{A}_{k} \boldsymbol{x}_{*}+\boldsymbol{e}_{k} \\
& \vdots
\end{aligned}
$$

RLS is an online algorithm for computing the best estimate for \boldsymbol{x}_{*} from all the measurements it has seen up to the current time.

$$
\begin{aligned}
& \text { Recursive Least Squares } \\
& \text { Initialize: (} \boldsymbol{y}_{0} \text { appears) } \\
& \boldsymbol{P}_{0}=\left(\boldsymbol{A}_{0}^{\mathrm{T}} \boldsymbol{A}_{0}\right)^{-1} \\
& \widehat{\boldsymbol{x}}_{0}=\boldsymbol{P}_{0}\left(\boldsymbol{A}_{0}^{\mathrm{T}} \boldsymbol{y}_{0}\right) \\
& \text { for } k=1,2,3, \ldots \text { do } \\
& \text { (} \boldsymbol{y}_{k} \text { appears) } \\
& \boldsymbol{P}_{k}=\boldsymbol{P}_{k-1}-\boldsymbol{P}_{k-1} \boldsymbol{A}_{k}^{\mathrm{T}}\left(\mathbf{I}+\boldsymbol{A}_{k} \boldsymbol{P}_{k-1} \boldsymbol{A}_{k}^{\mathrm{T}}\right)^{-1} \boldsymbol{A}_{k} \boldsymbol{P}_{k-1} \\
& \boldsymbol{K}_{k}=\boldsymbol{P}_{k} \boldsymbol{A}_{k}^{\mathrm{T}} \\
& \widehat{\boldsymbol{x}}_{k}=\widehat{\boldsymbol{x}}_{k-1}+\boldsymbol{K}_{k}\left(\boldsymbol{y}_{k}-\boldsymbol{A}_{k} \widehat{\boldsymbol{x}}_{k-1}\right) \\
& \text { end for }
\end{aligned}
$$

Technical Details: Matrix Inversion Lemma

The general statement of the Sherman-Morrison-Woodbury identity is that

$$
\left(\boldsymbol{W}+\boldsymbol{X}^{\mathrm{T}} \boldsymbol{Y} \boldsymbol{Z}\right)^{-1}=\boldsymbol{W}^{-1}-\boldsymbol{W}^{-1} \boldsymbol{X}^{\mathrm{T}}\left(\boldsymbol{Y}^{-1}+\boldsymbol{Z} \boldsymbol{W}^{-1} \boldsymbol{X}^{\mathrm{T}}\right)^{-1} \boldsymbol{Z} \boldsymbol{W}^{-1}
$$

where \boldsymbol{W} is $N \times N$ and invertible, \boldsymbol{X} and \boldsymbol{Z} are $R \times N$, and \boldsymbol{Y} is $R \times R$ and invertible.

The proof of this is straightforward. Given any right hand side $\boldsymbol{v} \in$ \mathbb{R}^{N}, we would like to solve

$$
\begin{equation*}
\left(\boldsymbol{W}+\boldsymbol{X}^{\mathrm{T}} \boldsymbol{Y} \boldsymbol{Z}\right) \boldsymbol{w}=\boldsymbol{v} \tag{1}
\end{equation*}
$$

for \boldsymbol{w}. Set

$$
\boldsymbol{z}=\boldsymbol{Y} \boldsymbol{Z} \boldsymbol{w} \quad \Rightarrow \quad \boldsymbol{Y}^{-1} \boldsymbol{z}=\boldsymbol{Z} \boldsymbol{w}
$$

We now have the set of two equations

$$
\begin{aligned}
\boldsymbol{W} \boldsymbol{w}+\boldsymbol{X}^{\mathrm{T}} \boldsymbol{z} & =\boldsymbol{v} \\
\boldsymbol{Z} \boldsymbol{w}-\boldsymbol{Y}^{-1} \boldsymbol{z} & =\mathbf{0}
\end{aligned}
$$

Manipulating the first equation yields

$$
\begin{equation*}
\boldsymbol{w}=\boldsymbol{W}^{-1}\left(\boldsymbol{v}-\boldsymbol{X}^{\mathrm{T}} \boldsymbol{z}\right) \tag{2}
\end{equation*}
$$

and then plugging this into the second equation gives us $\boldsymbol{Z} \boldsymbol{W}^{-1} \boldsymbol{v}-\boldsymbol{Z} \boldsymbol{W}^{-1} \boldsymbol{X}^{\mathrm{T}} \boldsymbol{z}-\boldsymbol{Y}^{-1} \boldsymbol{z}=\mathbf{0}$

$$
\begin{equation*}
\Rightarrow \quad \boldsymbol{z}=\left(\boldsymbol{Y}^{-1}+\boldsymbol{Z} \boldsymbol{W}^{-1} \boldsymbol{X}^{\mathrm{T}}\right)^{-1} \boldsymbol{Z} \boldsymbol{W}^{-1} \boldsymbol{v} \tag{3}
\end{equation*}
$$

So then given any $\boldsymbol{v} \in \mathbb{R}^{N}$, we can solve for \boldsymbol{w} in (1) by combining (2) and (3) to get

$$
\boldsymbol{w}=\boldsymbol{W}^{-1} \boldsymbol{v}-\boldsymbol{W}^{-1} \boldsymbol{X}^{\mathrm{T}}\left(\boldsymbol{Y}^{-1}+\boldsymbol{Z} \boldsymbol{W}^{-1} \boldsymbol{X}^{\mathrm{T}}\right)^{-1} \boldsymbol{Z} \boldsymbol{W}^{-1} \boldsymbol{v}
$$

As this holds for any right-hand side \boldsymbol{v}, this establishes the result.

[^0]: ${ }^{1}$ In practice, it is probably more stable to find and update a factorization of this matrix. But the cost is the same.

