
Streaming solutions to least-squares problems

In our discussion of least-squares so far, we have focussed on static
problems: a set of measurements y = Ax0 + e comes in all at once,
and we use them all to estimate x0.

In this section, we will shift our focus to streaming problems.
We observe

y0 = A0x1 + e0

y1 = A1x2 + e1

...

yk = Akxk + ek

...

At each time k, we want to form the best estimate of xk from the
observations y0,y1, . . . ,yk seen up to that point exploiting some
known structure regarding how the xk are related to each other.
Moreover, we would like to do this in an efficient manner. The size
of the problem is growing with k — rather than resolving the problem
from scratch every time, we would like a principled (and fast) way
to update the solution when a new observation is made.

We will consider two basic frameworks:

1. Recursive Least Squares (RLS):
The vector xk = x∗ for all k, i.e. we are estimating a static
vector x∗.

2. The Kalman filter:
The vector xk moves at every times step, and we have a (linear)
dynamical model for how it moves.
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In both of these frameworks, the measurements matrices A1,A2, . . .
can be different, and can even have a different number of rows. We
will assume that the total number of measurements we have seen at
any point exceeds the number of unknowns, and if we form

Ak =


A0

A1
...
Ak


then AT

kAk is invertible. Generalizing what we say to rank-deficient
systems is not hard, but this assumption makes the discussion easier.

The key piece of mathematical technology we need is the matrix
inversion lemma.

The Matrix Inversion Lemma

The matrix inversion lemma shows us how the solution to a system
of equations can be efficiently updated. Here we state a slightly
simplified version of the result: If W is an N ×N invertible matrix
and X is an R×N matrix, then the following identity holds:

(W + XTX)−1 = W −1 −W −1XT(I + XW −1XT)−1XW −1

This is a special case of the Sherman-Morrison-Woodbury identity,
and is straightforward to prove (see the Technical Details at the
end of these notes). The point is that if W −1 has already been
calculated, then finding a solution to (W + XTX)w = v costs
O(N 2R) + O(NR2) + O(R3) instead of O(N 3). If R is very small
compared to N , this can be a significant savings.
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Updating least-squares solutions

We can apply this fact to efficiently update the solution to least-
squares problems as new measurements become available.

Suppose we have observed

y0 = A0x∗ + e0

and have formed the least-squares estimate

x̂0 = (AT
0A0)

−1AT
0y0.

Now we observe
y1 = A1x∗ + e1,

where A1 is an M1×N matrix with M1 � N . Given y0 and y1, the
full least-squares estimate is formed from the system of equations[

y0

y1

]
=

[
A0

A1

]
x∗ +

[
e0

e1

]
,

resulting in

x̂1 =
(
AT

0A0 + AT
1A1

)−1
(AT

0y0 + AT
1y1).

Now let P k be the inverse of the aggregated system we would like to
solve at each step:

P 0 = (AT
0A0)

−1

P 1 = (AT
0A0 + AT

1A1)
−1.

Then using the matrix inversion lemma with W = AT
0A0 = P −10

and X = A1 gives us the update

P 1 = P 0 − P 0A
T
1 (I + A1P 0A

T
1 )−1A1P 0.
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When the number of new measurements (rows in A1) is small, then
the system of equations I + A1P 0A

T
1 can be much easier to handle

than AT
0A0 + AT

1A1 = P −11 . For example, suppose we see just one
new measurement, so the matrix A1 has just one row: A1 = aT

1 ,
a1 ∈ RN . Then

y1 = aT
1x∗ + e1,

and

x̂1 =
[
P 0 − P 0a1(1 + aT

1P 0a1)
−1aT

1P 0

]
(AT

0y0 + y1a1).

Set u = P 0a1. Then

x̂1 = x̂0 + y1u−
aT
1 x̂0

1 + aT
1u

u− y1 · aT
1u

1 + aT
1u

u

= x̂0 +

(
1

1 + aT
1u

)
(y1 − aT

1 x̂0)u.

Thus we can update the solution with one vector-matrix multiply
(which has cost O(N 2)) and two inner products (with cost O(N)).

In addition, we can carry forward the “information matrix” using the
update

P 1 = P 0 −
1

1 + aT
1u

uuT.

In general (for M1 new measurements), we have

x̂1 = P 1(A
T
0y0 + AT

1y1)

= P 1(P
−1
0 x̂0 + AT

1y1),

and since
P −10 = P −11 −AT

1A1,
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this implies

x̂1 = P 1

(
P −11 x̂0 −AT

1A1x̂0 + AT
1y1

)
= x̂0 + K1(y1 −A1x̂0),

where K1 is the “gain matrix”

K1 = P 1A
T
1 .

The update for P 1 is

P 1 = P 0 − P 0A
T
1 (I + A1P 0A

T
1 )−1A1P 0

= P 0 −U (I + A1U )−1UT,

where U = P 0A
T
1 is an N ×M1 matrix, and I+A1U is M1×M1.

So the cost of the update is

• O(M1N
2) to compute U = P 0A

T
1 ,

• O(M 2
1N) to compute A1U ,

• O(M 3
1 ) to invert1 (I + A1U )−1,

• O(M 2
1N) to compute (I + A1U )−1UT,

• O(M1N
2) to take the result of the last step and apply U ,

• O(N 2) to subtract the result of the last step from P 0.

So assuming that M1 < N , the overall cost is O(M1N
2), which is

on the order of M1 vector-matrix multiplies.

1In practice, it is probably more stable to find and update a factorization
of this matrix. But the cost is the same.
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Recursive Least Squares (RLS)

Given

y0 = A0x∗ + e0

y1 = A1x∗ + e1

...

yk = Akx∗ + ek

...,

RLS is an online algorithm for computing the best estimate for
x∗ from all the measurements it has seen up to the current time.

Recursive Least Squares

Initialize: (y0 appears)

P 0 = (AT
0A0)

−1

x̂0 = P 0(A
T
0y0)

for k = 1, 2, 3, . . . do

(yk appears)

P k = P k−1 − P k−1A
T
k (I + AkP k−1A

T
k )−1AkP k−1

Kk = P kA
T
k

x̂k = x̂k−1 + Kk(yk −Akx̂k−1)

end for
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Technical Details: Matrix Inversion Lemma

The general statement of the Sherman-Morrison-Woodbury iden-
tity is that

(W + XTY Z)−1 = W −1−W −1XT(Y −1 + ZW −1XT)−1ZW −1

where W is N ×N and invertible, X and Z are R×N , and Y is
R×R and invertible.

The proof of this is straightforward. Given any right hand side v ∈
RN , we would like to solve

(W + XTY Z)w = v (1)

for w. Set
z = Y Zw ⇒ Y −1z = Zw.

We now have the set of two equations

Ww + XTz = v

Zw − Y −1z = 0.

Manipulating the first equation yields

w = W −1(v −XTz), (2)

and then plugging this into the second equation gives us

ZW −1v −ZW −1XTz − Y −1z = 0

⇒ z = (Y −1 + ZW −1XT)−1ZW −1v.
(3)

So then given any v ∈ RN , we can solve for w in (1) by combining
(2) and (3) to get

w = W −1v −W −1XT(Y −1 + ZW −1XT)−1ZW −1v.

As this holds for any right-hand side v, this establishes the result.
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