
Iterative methods for solving least-squares

When A has full column rank, our least-squares estimate is

x̂ = (ATA)−1ATy.

If A is M × N , then constructing ATA costs O(MN 2) computa-
tions, and solving the N × N system ATAx = ATy costs O(N 3)
computations. (Note that for M ≥ N , the cost of constructing the
matrix actually exceeds the cost to solve the system.)

This cost can be prohibitive for even moderately largeM andN . But
inverse problems with large M and N are common in the modern
world. For example, a typical 3D MRI scan will try to reconstruct a
128 × 128 × 128 cube of voxels from about 5 million non-uniformly
spaced samples in the spatial Fourier domain. In this case, the matrix
A, which models the MRI machine, is M = 5 · 106 by N = 2.1 · 106.

With those values, MN 2 is huge (∼ 1019); even storing the matrix
ATA in memory would require terabytes of RAM.

To address this we can consider approaches that reformulate

ATAx = ATy

as an optimization program and then solve it by an iterative descent
method. Each iteration is simple, requiring one application of A and
one application of AT.

If ATA is well-conditioned, then these methods can converge in very
few iterations (especially conjugate gradients). This makes the cost
of solving a least-squares problem dramatically smaller — about the
cost of a few hundred applications of A.
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Moreover, we will not need to construct ATA or even A explicitly.
All we need is a “black box” which takes a vector x and returns Ax.
This is especially useful if it takes � O(MN) operations to apply
A or AT.

In the MRI example above, it takes about one second to apply ATA,
and the conjugate gradients method converges in about 50 iterations,
meaning that the problem can be solved in less than a minute. Also,
the storage requirement is on the order of O(M + N), rather than
O(MN).

In such a case we can take an alternative approach. Specifically, recall
that the least squares estimate is the solution to the optimization
problem

minimize
x∈RN

‖Ax− y‖22.

Note that we can write this equivalently as

minimize
x∈RN

xTATAx− 2xTATy + yTy.

We can ignore terms that do not depend on x, and can also rescale
the objective function by a constant (for convenience) to obtain

minimize
x∈RN

1

2
xTATAx− xTATy. (1)

We have previously shown that a necessary and sufficient condition
for x̂ to be the the minimizer of (1) is to satisfy

ATAx = ATy.

More generally, for any H which is symmetric and positive definite
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and any vector b, we can consider the optimization problem

minimize
x∈RN

1

2
xTHx− xTb, (2)

and by the same argument we can show that x̂ is the solution to (2)
if and only if

Hx̂ = b.

What remains is to show how we can actually solve an optimization
problem of the form (2) without directly solving the system Hx =
b. Here we will describe iterative methods — most prominently
steepest descent — that do exactly this.

Steepest descent

Say you have an unconstrained optimization program

minimize
x∈RN

f (x)

where f (x) : RN → R is convex. One simple way to solve this
program is to simply “roll downhill”. If we are sitting at a point
x0, then f (·) decreases the fastest if we move in the direction of the
negative gradient −∇f (x)|x=x0

.

From a starting point x0, we move to

x1 = x0 − α0 ∇f (x)|x=x0

then to

x2 = x1 − α1 ∇f (x)|x=x1

...

xk = xk−1 − αk−1 ∇f (x)|x=xk−1
,

where the α0, α1, . . . are appropriately chosen step sizes.

33

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:53, December 5, 2019



8 Jonathan Richard Shewchuk
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Figure 8: Here, the method of Steepest Descent starts at 2 2 and converges at 2 2 .

Putting it all together, the method of Steepest Descent is:

(10)

(11)

1 (12)

The example is run until it converges in Figure 8. Note the zigzag path, which appears because each
gradient is orthogonal to the previous gradient.

The algorithm, as written above, requires two matrix-vector multiplications per iteration. The computa-
tional cost of Steepest Descent is dominated by matrix-vector products; fortunately, one can be eliminated.
By premultiplying both sides of Equation 12 by and adding , we have

1 (13)

Although Equation 10 is still needed to compute 0 , Equation 13 can be used for every iteration thereafter.
The product , which occurs in both Equations 11 and 13, need only be computed once. The disadvantage
of using this recurrence is that the sequence defined by Equation 13 is generated without any feedback from
the value of , so that accumulation of floating point roundoff error may cause to converge to some
point near . This effect can be avoided by periodically using Equation 10 to recompute the correct residual.

Before analyzing the convergence of Steepest Descent, I must digress to ensure that you have a solid
understanding of eigenvectors.

(from Shewchuk, “... without the agonizing pain”)

For our particular optimization problem

minimize
x

1

2
xTHx− xTb,

we can explicitly compute both the gradient and the best choice of
step size. The (negative) gradient is what we call the residual, the
difference between b and H applied to the current iterate:

−∇
(

1

2
xTHx− xTb

)∣∣∣∣
x=xk

= b−Hxk =: rk.

The steepest descent iteration can be written as

xk+1 = xk + αk rk.

There is a nifty way to choose an optimal value for the step size αk.
We want to choose αk so that f (xk+1) is as small as possible. It is
not hard to show that f (xk + αrk) is convex as a function of α for
α ≥ 0. Thus we can choose the value of α that makes the derivative
of this function zero; we want

d

dα
f (xk + αrk) = 0.
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By the chain rule,

d

dα
f (xk+1) = ∇f (xk+1)

T d

dα
xk+1

= ∇f (xk+1)
Trk.

So we need to choose αk such that

∇f (xk+1) ⊥ rk,

or more concisely

rk+1 ⊥ rk (rT
k+1rk = 0).

So let’s do this

rT
k+1rk = 0

⇒ (b−Hxk+1)
Trk = 0

⇒ (b−H(xk + αkrk))
Trk = 0

⇒ (b−Hxk)
Trk − αk rT

kHrk = 0

⇒ rT
krk − αk rT

kHrk = 0

and so the optimal step size is

αk =
rT
krk

rT
kHrk

.

The steepest descent algorithm performs this iteration until
‖Hxk − b‖2 is below some tolerance δ:
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Steepest Descent, version 1

Initialize: x0 = some guess, k = 0, r0 = b−Hx0.

while not converged, ‖rk‖2 ≥ δ do

αk = rT
krk/r

T
kHrk

xk+1 = xk + αk rk

rk+1 = b−Hxk+1

k = k + 1

end while

There is a nice trick that can save us one of two applications of H
needed in each iteration above. Notice that

rk+1 = b−Hxk+1 = b−H(xk + αkrk) = rk − αkHrk.

So we can save an application of H by updating the residual rather
than recomputing it at each stage.

Steepest Descent, more efficient version 2

Initialize: x0 = some guess, k = 0, r0 = b−Hx0.
while not converged, ‖rk‖2 ≥ δ do

q = Hrk

αk = rT
krk/r

T
kq

xk+1 = xk + αk rk

rk+1 = rk − αk q
k = k + 1

end while
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The effectiveness of SD depends critically on how H is conditioned
and the starting point. Consider the two examples on the next page.

Convergence Analysis of Steepest Descent 19
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Figure 17: Convergence of Steepest Descent as a function of (the slope of ) and (the condition
number of ). Convergence is fast when or are small. For a fixed matrix, convergence is worst when

.
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Figure 18: These four examples represent points near the corresponding four corners of the graph in
Figure 17. (a) Large , small . (b) An example of poor convergence. and are both large. (c) Small
and . (d) Small , large .

(from Shewchuk, “... without the agonizing pain”)

When the conditioning of H is poor and we choose a bad starting
point, convergence can take many iterations even in simple cases.
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The method of conjugate gradients (CG)

An excellent companion resource for this section is the manuscript:
J. Shewchuk: “An introduction to the conjugate gradient method
without the agonizing pain”.

We can see from the example on the last page that steepest descent
can be inefficient because it can move in essentially the same direction
many times.

CG avoids this by ensuring that each step is orthogonal (in an ap-
propriate inner product) to all of the previous steps that have been
taken. Miraculously, this can be done with very little overhead.

Suppose for a moment that we pre-determine N step directions
d0, . . . ,dN−1 that are orthogonal (but not necessarily normalized),
dT
j di = 0 for i 6= j. This means that {dk/‖dk‖2, k = 0, . . . , N − 1}

is an orthobasis for RN . Then given a starting point x0, the initial
error e0 = x0 − x̂, where x̂ is the solution that satisfies Hx̂ = b,
can be expanded as

e0 =
N−1∑
`=0

c`
d`
‖d`‖2

, where c` =
dT
` e0

‖d`‖2
. (3)

Given step sizes α0, α1, . . ., the error after the kth step is

ek = xk − x̂

= xk−1 + αk−1dk−1 − x̂ = ek−1 + αk−1dk−1
= ek−2 + αk−1dk−1 + αk−2dk−2

...

= e0 +
k−1∑
`=0

α`d`.

38

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:53, December 5, 2019



Thus, if we choose the step sizes αk carefully, then we can pick-off a
component in (3) at every step. In particular, if we choose

αk = − ck
‖dk‖2

=
−dT

ke0

‖dk‖22
, (4)

then we have

ek =
N−1∑
`=k

ck
dk
‖dk‖2

, and ‖ek‖22 =
N−1∑
`=k

|ck|2.

So we see that as k increases, there are fewer and fewer terms in the
sum above, steadily decreasing the error until

eN = 0.

The argument above works for any set of orthogonal step directions
{dk}. It would be beautiful, except that we do not know the
initial error e0 = x0 − x̂. (If we did, we would have a solution in
one step: just subtract e0 from x0!) Thus there is no way we can
compute the stepsizes in (4).

But the argument above works not only for any orthobasis, but also
for any valid inner product (and an accompanying basis which is
orthogonal under that inner product). The key innovation in CG is
to adaptively choose the step directions dk and step sizes αk so that
the steps are orthogonal in the H inner product:

〈di,dj〉H = dT
jHdi.

It is easy to verify that if H is sym+def, then 〈·, ·〉H is a valid inner
product.
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So again, suppose that we start at x0 with initial error e0. If
d0, . . . ,dN−1 are H-orthogonal vectors, then

e0 =
N−1∑
`=0

c`
d`
‖d`‖H

,

where ‖d`‖2H = dT
`Hd`, and

c` =
〈e0,d`〉H
‖d`‖H

=
dT
`He0

‖d`‖H
.

As we will show below, the iterations below produce a set of H-
orthogonal step directions {dk} with step sizes αk = −ck/‖dk‖H .

Conjugate Gradients

Initialize: x0 = some guess
r0 = b−Hx0

d0 = r0

for k = 0 to N − 1 do
αk = rT

krk/d
T
kHdk

xk+1 = xk + αkdk

rk+1 = rk − αkHdk

βk+1 = rT
k+1rk+1/r

T
krk

dk+1 = rk+1 + βk+1dk
end for
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We will start our analysis of this iteration by establishing the follow-
ing two facts:

F1: 〈rk+1, r`〉 = rT
` rk+1 = 0 for ` = 0, . . . , k.

That is, the residual is orthogonal to all previous residuals.

F2: 〈dk+1,d`〉H = dT
`Hdk+1 = 0 for ` = 0, . . . , k.

That is, the direction is H-orthogonal to all previous
directions.

We establish these two facts by induction. We start at k = 1:

1. 〈r1, r0〉 = rT
0 r1 = 0, since

r1 = r0 −
rT
0 r0

rT
0Hr0

Hr0

⇒ rT
0 r1 = rT

0 r0 − rT
0 r0

rT
0Hr0

rT
0Hr0

= 0.

2. 〈d1,d0〉H = dT
0Hd1 = 0, since

r1 = r0 − α0Hd0

⇒ rT
1 r1 = rT

1 r0 − α0r
T
1Hd0

⇒ rT
1Hd0 = − 1

α0

rT
1 r1,

since rT
1 r0 = 0. Also,

d1 = r1 +
rT
1 r1

rT
0 r0

d0

⇒ dT
0Hd1 = dT

0Hr1 +
rT
1 r1

rT
0 r0

dT
0Hd0

=
rT
1 r1

rT
0 r0

dT
0Hd0 −

rT
1 r1

rT
0 r0

dT
0Hd0 = 0.
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Now at step k + 1, suppose we have

〈rj, r`〉 = rT
` rj = 0 ∀j, ` ≤ k,

〈dj,d`〉H = dT
`Hdj = 0 ∀j, ` ≤ k.

Then we will also have the following:

1. 〈rk+1, r`〉 = rT
` rk+1 = 0 for all ` ≤ k.

To see this, notice that

rT
`Hdk = (d` − β`d`−1)THdk (5)

=

{
dT
kHdk ` = k

0 ` < k,
(6)

where the second step follows directly from the fact that 〈dk,d`〉H =
0 for ` < k. As a result

rT
` rk+1 = rT

` rk −
rT
krk

dT
kHdk

rT
`Hdk = 0 for all ` ≤ k. (7)

2. 〈dk+1,d`〉H = dT
`Hdk+1 = 0 for all ` ≤ k.

This follows from the expansion

dT
`Hdk+1 = dT

`Hrk+1 + βk+1d
T
`Hdk.

Notice that

rT
i rk+1 = rT

i rk − αkrT
i Hdk

⇒ rT
i Hdk =


1
αk
rT
krk i = k

− 1
αk
rT
k+1rk+1 i = k + 1

0 i < k.

(8)
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Then for ` = k

dT
kHdk+1 = − 1

αk
rT
k+1rk+1 + βk+1d

T
kHdk

=
−rT

k+1rk+1

rT
krk

dT
kHdk +

rT
k+1rk+1

rT
krk

dT
kHdk

= 0.

For ` < k,

dT
`Hdk+1 = dT

`Hrk+1 + βk+1d
T
`Hdk.

For the first term

dT
`Hrk+1 = 0,

since Hd` = α−1` (r` − r`+1) and we have (7); for the second
term

βk+1d
T
`Hdk = 0,

since the d0,d1, . . . ,dk are H-orthogonal already.

We have established that the direction dk that CG moves on iteration
k is H-orthogonal to all previous directions. Now let’s look at the
step sizes, where we want to establish that αk = −ck/‖dk‖H =
−dT

kHe0/‖dk‖2H . Start by noting (6) above, and recall that

rk = b−Hxk = H(x̂− xk) = −Hek.

At the first step, we have d0 = r0, and so

α0 =
rT
0 r0

dT
0Hd0

=
dT
0 r0

dT
0Hd0

=
dT
0H(x̂− x0)

dT
0Hd0

=
−dT

0He0

dT
0Hd0

.
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At subsequent steps, since

dk = rk +
k−1∑
i=0

γiri for some γi ∈ R,

by Fact 1, we have
rT
krk = dT

krk,

and so

αk =
dT
krk

dT
kHdk

=
−dT

kH
(
e0 +

∑k−1
`=0 α`d`

)
dT
kHdk

=
−dT

kHe0

dT
kHdk

.

So finally, this means that for the method of conjugate gradients,

ek =
N−1∑
`=k

(
dT
` r`

dT
`Hd`

)
d`, ‖ek‖2H =

N−1∑
`=k

|dT
` r`|2

dT
`Hd`

.

As k increases, the number of (positive) terms in the sum above gets
smaller and smaller, until finally

eN = 0.

Thus CG is guaranteed to converge exactly in N steps.

Since each iteration of CG involves a vector-matrix multiply, each of
which are O(N 2), and we converge in O(N) iterations, CG solves
Hx = b in O(N 3) computations in general, the same as other
solvers.
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But there are two important things to realize:

1. If H is specially structured so that it takes � O(N 2) com-
putations to apply, then CG takes advantage of this. The real
cost is N applications of H .

2. It is often the case that ‖ek‖2H is acceptably small for relatively
modest values of k. This is particularly true if H is well-
conditioned. Each iteration (application of H) gets us closer,
in a measurable way, to the solution.

CG can get an approximate (but still potentially very good) solu-
tion using much less computation than solving the system directly.

It also significantly outperforms steepest descent.

Convergence Guarantees

We can actually talk intelligently about how many iterations we need
for steepest descent and CG to converge to within a certain precision.
Here we present (but do not prove) two “worst case” bounds that
depend on the condition number κ of H :

κ =
λmax(H)

λmin(H)
=

max eigenvalue

min eigenvalue
.

For steepest descent, we will have

‖ek‖H ≤ δ ‖e0‖H
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in at most1

k ≤
⌈

1

2
κ log

(
1

δ

)⌉
iterations.

For CG, we need at most

k ≤
⌈

1

2

√
κ log

(
2

δ

)⌉
.

There are nice derivations for both of these bounds in the Shewchuk
manuscript mentioned at the beginning of these notes.

Example:

Say the condition number of H is κ = 100. How many iterations do
you need to get 6 digits of precision (δ = 10−6)?

SD :

⌈
1

2
· 100 · log(106)

⌉
= 691,

CG :

⌈
1

2
· 10 · log(2 · 106)

⌉
= 73.

Again, these are worst-case bounds, and performance in both cases
is typically better.

1These are natural logarithms.
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