
III. Computing the Solution to
Least-Squares Problems

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

Here are some of the least-squares problems we have talked about so
far:

Pseudo-inverse when A
has full column rank

x̂ = (ATA)−1ATy

Pseudo-inverse when A
has full row rank

x̂ = AT(AAT)−1y

Tikhonov regularization x̂ = (ATA + δI)−1ATy

Here are some that we did not talk about, but are easy extensions:

Constrained least-squares:

min
x
‖y −Ax‖22 subject to x = Gα for some α,

has solution
x̂ = G(GTATAG)−1GTATy.

Generalized Tikhonov regularization:

min
x
‖y −Ax‖22 + δ‖Dx‖22,

has solution
x̂ = (ATA + δDTD)−1ATy.

Weighted least-squares

min
x
‖W (y −Ax)‖22,

has solution
x̂ = (ATW TWA)−1ATW TWy.

1

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

Each of the problems on the previous page involves solving a system
of symmetric positive definite system of equations. Specifi-
cally, with a slight abuse of notation we can think of solving any of
these problems as solving a system of the form

Ax = b

for x where A and b are known.

There are many ways to solve general systems of equations. Most
general methods revolve around factoring the matrix A into a series
of systems that are much easier to solve — doing this allows us to re-
use our work if we have multiple right-hand sides. We have already
seen one of these factorizations several times: the eigendecomposi-
tion, or more generally the singular value decomposition, which can
play a central role in solving many of the problems above, as well as
other least-squares problems such as the truncated SVD for stable
recovery, total least-squares, and PCA. Here we will describe how to
actually compute an eigendecomposition, as well as discussing several
other useful matrix factorizations.

We will start with a (very) brief overview of how to solve general
systems of equations using explicit matrix computations. If you want
to read more about this, the classic reference is:

G. H. Golub and C. F. van Loan, Matrix Computations, now in its
4th edition (2012).

First, to set some context, let’s look at some particular types of
systems which are “easy” to solve. In all of the examples below, A
is an invertible N ×N matrix.

2

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

Diagonal systems. If

A =


a11 0 · · ·
0 a22

. . .
aNN


with ann 6= 0, then solvingAx = b for a given b is easy; simply
take

x̂[n] = b[n]/ann.

This is of course very efficient computationally; we can compute
x̂ in O(N) time.

Example. Solve3 0 0
0 −1 0
0 0 4

x[1]
x[2]
x[3]

 =

0.5
14
7


Orthogonal systems. If the columns (or equivalently the rows) of

A are orthonormal, ATA = I, then A−1 = AT, and we can
solve Ax = b with a single matrix-vector multiply:

x̂ = ATb.

In general, the cost of this matrix-vector multiply is O(N 2).

Example: Solve1 0 0
0 1/

√
2 1/

√
2

0 −1/
√

2 1/
√

2

x[1]
x[2]
x[3]

 =

3
0
1



3

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

Triangular systems. IfA is lower triangular in that all of the terms
above its main diagonal are zero,

A =


a11 0 0
a21 a22 0
a31 a32 a33
... . . .
aN1 aN2 · · · aNN

 ,
with ann 6= 0, then given b, we can solveAx = b using forward
substitution:

x̂[1] = b[1]/a11
x̂[2] = (b[2]− a21x̂[1])/a22

...

x̂[N] =

(
b[N]−

N−1∑
n=1

aNnx̂[n]

)
/aNN .

The total cost of this is about the same as a vector-matrix
multiply, O(N 2). If A is upper triangular,

A =


a11 a12 a13 · · · a1N
0 a22 a23 a2N
0 0 a33 a3N
... . . .
0 aNN

 ,
then given y we can solve Ax = y using backward substitu-
tion. (Write it down at home!)

Example: Solve 2 0 0
−1 3 0
1 1 1

x[1]
x[2]
x[3]

 =

 14
−2
1



4

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

Matrix factorization

The general strategy for solving a system of equations is to factor
the matrix A into multiple components, each of which has one of
the structures above. These factorizations are not significantly more
expensive than solving a system using Gaussian elimination, and once
they are performed, solving another system Ax = b with the same
A (but different b) is fast.

LU factorization

Every N×N matrixA can be written as a productA = LU , where
L is lower diagonal, and U is upper diagonal. The decomposition is
in general not unique, but if we restrict the diagonal entries of L (or
U) to be 1 (or anything 6= 0), then it becomes unique (when A is
invertible).

Example: 2 1 −1
−3 −1 2
−2 1 2

 =

 1 0 0
−1.5 1 0
−1 4 1

2 1 −1
0 0.5 −0.5
0 0 −1


A = L U

If A is invertible, then both L and U are invertible. So given Ax =
b, we can solve for x as follows:

x = A−1b = U−1L−1b.

More explicitly, we solve for w in Lw = b, then solve for x in
Ux = w. As we have argued above, the cost of solving each of

5

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

these systems of equations with the factorization in place is O(N 2)
(as opposed to O(N 3)).

Computing the LU factorization is basically the same as recording
all of your work while you are doing Gaussian elimination. We start
with the original matrix, perform row operations on it until it is in
upper triangular form. Each of the row operations corresponds to a
lower-diagonal matrix with one off diagonal term, and their product
will also be lower diagonal. See the technical details at the end of
these notes for an example worked out in detail.

Cholesky factorization

When A is symmetric positive definite, we can take the lower- and
upper-triangular factors to be transposes of one another:

A = LLT.

In this case, L will not have 1’s along the diagonal. Algorithms used
to compute Cholesky factorization are similar to those that compute
LU factorizations. See the technical details at the end of these notes
for further detail.

The Cholesky decomposition is unique. It can actually be computed
slightly faster than a general LU decomposition, and is easier to
stabilize.

Example.6 3 0
3 4 1
0 1 3

 =

2.4495 0 0
1.2247 1.5811 0

0 0.6325 1.6125

2.4495 1.2247 0
0 1.5811 0.6325
0 0 1.6125



6

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

QR factorization

The QR decomposition factors A as

A = QR,

where Q is orthogonal, and R is upper triangular. It can be com-
puted by running (a stabilized version of) Gram-Schmidt on the
columns of A; its computational complexity is again O(N 3). Once
we have it in hand, solving Ax = b has the cost of solving an or-
thogonal system (O(N 2)) and a triangular system (O(N 2)).

We will explore this connection more on the next homework.

Like all of the other decompositions in this section, computing a
QR decomposition costs O(N 3), but once it is in place, we can solve
Ax = b using x = R−1QTb in O(N 2) time.

Symmetric QR

When A is symmetric, we can write

A = QTQT,

where Q is orthonormal, and T is symmetric and tri-diagonal:

T =


t11 t12 0 0 · · · 0
t21 t22 t23 0 · · · 0
0 t32 t33 t34 · · · 0
...
0 · · · 0 tNN−1 tNN

 .

7

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

This is a handy fact, since in general, tridiagonal matrices are easier
to manipulate (invert, compute eigenvalues/eigenvectors of, etc) that
general symmetric matrices.

We call this “symmetric QR” since algorithms to compute this de-
composition are very similar to those used to compute A = QR.
See the technical details at the end of these notes for an example of
such an algorithm.

SVD and eigenvalue decompositions

We are already familiar with the SVD for general matrices:

A = UΣV T.

When A is square and invertible (rank(A) = N), then all of U ,Σ,
and V are N × N and UUT = UTU = V V T = V TV = I. As
we have seen, we can solve Ax = b with

x = V Σ−1UTb.

We can see that with the SVD in place, the cost of solving a system
is O(N 2).

For symmetric A, we can write

A = V ΛV T,

and then Ax = b is solved with x = V Λ−1V Tb.

Both of these decompositions represent a matrix as orthogonal-diagonal-
orthogonal. Computing either costs O(N 3), and they are slightly
more expensive than the QR and LU decompositions above. In
fact, computing a QR decomposition is often used as a stepping
stone to computing the SVD or eigenvalue decomposition.

8

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

Computing eigenvalue decompositions of
symmetric matrices

For N×N symmetric positive semi-definite A, there are many ways
to compute the eigenvalue decomposition A = V ΛV T. We discuss
here one particular technique, popular for its stability, flexibility, and
speed, based on power iterations.

Power iterations for computing v1

To start, let’s consider the simpler problem of computing the largest
eigenvalue λ1 and corresponding eigenvector v1 of A. We do this
with the following iteration.

Let q0 be an arbitrary vector in RN with unit norm, ‖q0‖2 = 1.
Then for k = 1, 2, . . . compute

zk = Aqk−1

qk =
zk
‖zk‖2

γk = qTkAqk

Then, as long as q0 is not orthogonal to v1, 〈q0,v1〉 6= 0, and λ1 >
λ2, as k gets large

qk → v1 and γk → λ1.

A detailed proof of this, including rates of convergence, can be found
in Section 8.2 of the Golub/van Loan book. But we can see roughly
why it works with a simple calculation.

9

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

The vector qk above can be written as

qk =
Akq0
‖Akq0‖2

.

Since the eigenvectors of A, v1,v2, . . . ,vN form an orthobasis for
RN , we can write

q0 = α1v1 + α2v2 + · · · + αNvN ,

for αn = 〈q0,vn〉. Then the expression for qk above becomes

qk =
α1λ

k
1v1 + α2λ

k
2v2 + · · · + αNλ

k
NvN√

α2
1λ

2k
1 + α2

2λ
2k
2 + · · · + α2

Nλ
2k
N

.

If α1 6= 0 and λ1 > λ2 ≥ · · · ≥ λN , then as k gets large, the first
term in each of the sums above will dominate. Thus for large k,

qk ≈
α1λ

k
1v1√

α2
1λ

2k
1

= v1.

Since vT
1Av1 = λ1 and qk ≈ v1, we also have that qTkAqk ≈ λ1.

QR iterations

Now consider the problem of computing all the eigenvectors and
eigenvalues of A. We might be tempted to extend the the power
method by starting with an entire orthobasis1 Q0, then take

Zk = AQk−1,

1So Q0 is N ×N and satisfies QT
0Q0 = I.

10

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

and then renormalize the columns of Zk to get Qk. The problem
with this is that all of the columns of Zk will converge to v1 — this
is just running the power method with N different starting points.

What we do instead is “orthonormalize” the columns of Zk, we make
them orthogonal to each other at every iteration as well as unit norm.
This gives us the following iteration:

Let Q0 be any orthonormal matrix. For k = 1, 2, . . . , take

Zk = AQk−1 (1)

[Qk,Rk] = qr(Zk) (so Zk = QkRk). (2)

Using arguments not too different than for the power method, you
can show (again, see Golub/van Loan Section 8.2 for details) that

Qk → V , and Γk = QT
kAQk → Λ.

A more popular way to state the iteration (1)–(2) above, and the one
you will see in almost every textbook on numerical linear algebra, is
the following.

Set Γ0 = A. Then for k = 1, 2, . . . , take

[U k,Rk] = qr(Γk−1) (so Γk−1 = U kRk) (3)

Γk = RkU k (4)

So at each iteration, we are computing a QR factorization, then
reversing it (cute!). This gives us the relation

Rk−1U k−1 = U kRk.

To see the relationship between version 1 in (1)–(2) and version 2 in

11

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

(3)–(4), notice that if we initialize version 1 with Q0 = I, then

A = Q1R1 ⇒ Q1 = AR−11

AQ1 = Q2R2 ⇒ Q2 = A2R−11 R
−1
2

...

AQk−1 = QkRk ⇒ Qk = AkR−11 R
−1
2 · · ·R

−1
k .

In version 2, we have

A = U 1R1

A2 = U 1R1U 1R1 = U 1U 2R2R1

A3 = U 1R1U 1U 2R2R1 = U 1U 2R2U 2R2R1 = U 1U 2U 3R3R2R1

...

Ak = U 1U 2 · · ·U kRkRk−1 · · ·R1,

which is the same thing as version 1 with

Qk = U 1U 2 · · ·U k.

To keep track of the eigenvectors, we can restate the QR algorithm
as follows.

Let Γ0 = A, Q0 = I. For k = 1, 2, . . . , do

[U k,Rk] = qr(Γk−1) (so Γk−1 = U kRk)

Γk = RkU k

Qk = Qk−1U k

Then Γk → Λ and Qk → V .

12

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

Comments on computational complexity

The methods above have been the object of intense study over the
past 50-60 years, and their cost and stability is very well understood.
Notice that all of the methods cost O(N 3) in the general case — this
is the essential cost of solving a system of linear equations.

When N is small, O(N 3) is OK. For example, I have a nice desktop
system (a 3.8 GHz Intel i7 with 8 cores and 64 GB memory), and
this about how long it takes MATLAB to solve Ax = b for different
N :

N = 100: 0.0003 seconds (300µs)

N = 1 000: 0.01 seconds (10ms)

N = 5 000: 0.5 seconds

N = 10 000: 2.6 seconds

N = 50 000: 190 seconds (3.2 min)

There are many applications where N is in the millions (or even
billions). In these situations, solving Ax = b directly is infeasible.
You can roughly divide problems into three categories:

Small scale. N . 103. Here O(N 3) algorithms are OK, and exact
algorithms are appropriate.

Medium scale. N ∼ 104. Here O(N 3) is not OK, O(N 2) is OK. It
may be hard to even store the matrix in memory at this point.

Large scale. N & 105. Here O(N 2) is not OK, O(N 3) is typ-
ically unthinkable. We need algorithms that are O(N) or
O(N logN), possibly at the cost of finding an exact solution.

13

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

We will start by looking at certain types of structured symmetric
matrices. This structure allows us to solve Ax = b significantly
faster than O(N 3).

After this, we will consider iterative algorithms for finding an
appropriate solution to Ax = b when A is sym+def. These algo-
rithms have the nice feature that the matrix A does not need to be
held in memory — all we need is a “black box” that computes Ax
given x as input. This is especially nice if you have a fast implicit
method for computing Ax (e.g A involved FFTs, or is sparse).

Structured matrices

We will discuss three types of structured matrices, although plenty of
other types exist. In each of these cases, the structure of the system
allows us to do a solve in much better than O(N 3) operations.

Identity + low rank

Consider a system of the form

(γI +BBT)x = b,

where γ > 0 is some scalar, and B is a N ×R matrix with R < N .
These types of systems are prevalent in array signal processing and
machine learning. We will see that if R � N , this system can be
solved in (much) faster than O(N 3) time.

Note that while BBT is not at all invertible (since it is rank defi-
cient), γI +BBT will be. To see this, set

z = BTx, z ∈ RR.

14

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

Then we can solve the system by jointly solving for x and z:

γx +Bz = b (5)

BTx− z = 0. (6)

Solving the first equations (5) yields

x = γ−1(b−Bz),

and then plugging this into (6) gives us

γ−1BT(b−Bz)− z = 0

⇒ (γI +BTB)z = BTb

and so
z = (γI +BTB)−1BTb.

But notice that this is an R×R system of equations.

So it takes O(NR2) to construct γI +BTB,
then O(R3) to solve for z,
then O(NR) to calculate Bz (and hence find x).

The dominant cost in all of this is O(NR2), which is much less than
O(N 3) if R� N .

Circulant systems.

A circulant matrix has the form

H =


h0 hN−1 hN−2 · · · h1

h1 h0 hN−1 · · · h2

h2 h1 h0
...

... hN−1
hN−1 h1 h0



15

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

ForH symmetric, we have hk = hN−k for k = 1, . . . , N−1, although
symmetry does not play too big a role in exploiting this structure.

Circulant matrices have two very nice properties:

• We know their eigenvectors already — they are the discrete
harmonic sinusoids (i.e. the columns of the N × N DFT ma-
trix).

• Transforming into the eigenbasis is fast thanks to the FFT
(which is O(N logN)).

We can write

H = FΛF H, F [m,n] =
1√
N
ej2πmn/N

and
H−1 = FΛ−1F H,

so

H−1b = F︸︷︷︸
FFT, O(N logN);

Λ−1︸︷︷︸
diagonal weighting, O(N);

F Hb︸︷︷︸
FFT, O(N logN)

⇒ solving an N×N system of equations can be done in O(N logN)
time!

This is fast compared to O(N 3) — on my computer, I can solve a
system like this in N = 20 000 in 800µs (compare to 24 seconds for
the general case).

16

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

Toeplitz systems.

Toeplitz matrices, which are matrices that are constant along their
diagonals, arise in many different signal processing applications, as
they are fundamental in describing the action of linear time-invariant
systems. For example, suppose we observe the discrete convolution of
an unknown signal x of lengthN and a known sequence2 a0, . . . , aL−1
of length L. We can write the corresponding matrix equation as

a0 0 · · · 0
a1 a0 0 · · · 0
a2 a1 a0 · · · 0
...

aN−1 aN−2 · · · a0
...

aL−1 aL−2 · · · aL−N
0 aL−1 · · · aL−N+1
...
0 0 · · · · · · aL−1




x[0]
x[1]

...
x[N − 1]

 =



y[0]
y[1]
y[2]

...
y[N − 1]

...
y[L− 1]
y[L]

...
y[L + N − 2]


If we recover x from y using least-squares, x̂ = A†y = (ATA)−1ATy,
then the N×N system we need to invert,H = ATA is also Toeplitz
(and is of course symmetric and non-negative definite):

H =


h0 h1 · · · hN−1
h1 h0 h1 · · · hN−2
h2 h1 h0 · · · hN−3
...

hN−1 · · · · · · h0

 .

2We are going to save some space in this section by using subscript notation
to index signals that are going in a matrix; i.e. ak instead of a[k].

17

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

Here is a quick example in MATLAB:

>> A = toeplitz([1; randn(5,1); zeros(3,1)], [1 zeros(1,3)])

A =

1.0000 0 0 0

-0.4336 1.0000 0 0

0.3426 -0.4336 1.0000 0

3.5784 0.3426 -0.4336 1.0000

2.7694 3.5784 0.3426 -0.4336

-1.3499 2.7694 3.5784 0.3426

0 -1.3499 2.7694 3.5784

0 0 -1.3499 2.7694

0 0 0 -1.3499

>> H = A’*A

H =

23.6023 6.8156 -5.0905 1.9151

6.8156 23.6023 6.8156 -5.0905

-5.0905 6.8156 23.6023 6.8156

1.9151 -5.0905 6.8156 23.6023

Symmetric Toeplitz systems appear frequently in linear prediction,
array processing, adaptive filtering, and other areas of statistical sig-
nal processing. An N × N Toeplitz system H can be inverted in
O(N 2) time using the Levinson-Durbin algorithm. The algo-
rithm is relatively easy to derive, and even easier to implement. The
increase in efficiency it offers is significant, as the difference between
O(N 3), the cost of solving the system using a general linear solver,
and O(N 2) is enormous even for moderate N .

18

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

Technical Details: LU , Cholesky, and Symmetric
QR Factorizations

Example of LU factorization

Start with the original matrix

A =

 2 1 −1
−3 −1 2
−2 1 2


Eliminate the lower-left term. In this case we can add the first row
to the third row, i.e. 1 0 0

0 1 0
1 0 1

 2 1 −1
−3 −1 2
−2 1 2

 =

 2 1 −1
−3 −1 2

0 2 1


L1 A = A1

Eliminate the term in (row,column) = (2, 1) by adding 3/2 the top
row to the second row: 1 0 0

1.5 1 0
0 0 1

 2 1 −1
−3 −1 2

0 2 1

 =

 2 1 − 1
0 0.5 0.5
0 2 1


L2 A1 = A2

Finally, we eliminate (3, 2) by subtracting 4 times the second row
from the third row:1 0 0

0 1 0
0 −4 1

 2 1 − 1
0 0.5 0.5
0 2 1

 =

 2 1 − 1
0 0.5 0.5
0 0 −1


L3 A2 = U .

19

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

So we have:
L3L2L1A = U ,

where U is upper triangular and the Li are all lower triangular with
1 along the diagonal and exactly 1 non-zero off-diagonal term. Using
the facts that

1. the inverses of Li are also lower triangular with 1 down the
diagonal and exactly one non-zero off-diagonal term (show this
at home!), and

2. the product of two lower triangular matrices with 1 down the
diagonal is again lower-triangular with 1 down the diagonal
(show this at home!),

we have
A = (L−11 L

−1
2 L

−1
3)U = LU ,

where L is lower diagonal with 1 down the diagonal. In the example
above, we have

L = L−11 L
−1
2 L

−1
3 =

 1 0 0
0 1 0
−1 0 1

 1 0 0
−1.5 1 0

0 0 1

1 0 0
0 1 0
0 4 1


=

 1 0 0
−1.5 1 0
−1 4 1


If we count up the operations above, we have to eliminate (N−1)N/2
terms, each at a cost of O(N), so computing the LU factorization
is O(N 3) (same as using Gaussian elimination to solve Ax = b0 for
a particular b0).

20

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

Cholesky factorization

The basic idea in Cholesky factorization is that you can use elimi-
nation to find an lower-triangular matrix R1 that eliminates all but
the first entry in the first column of A:

R1


a11 a12 · · · a1N
a21 a22 · · · a2N
... . . .
aN1 aN2 · · · aNN

 =


√
a11 a′12 · · · a′1N
0 a′22 · · · a′2N
... . . .
0 a′N2 · · · a′NN

 .
SinceA is symmetric, we can do the same elimination on the columns
to get

R1AR
T
1 =


1 0 · · · 0
0 a′′22 · · · a′′2N
... . . .
0 a′′N2 · · · a′′NN

 =

[
1 0T

0 A1

]

It is easy to see that A1 must also be symmetric (and positive defi-
nite), so we continue by eliminating all but the first entry in its first
column using another lower-triangular matrix R2, then doing the
same to the columns to get

R2R1AR
T
1R

T
2 =

[
I 0
0 A2

]
.

After N such iterations, we have

RN · · ·R1AR
T
1 · · ·R

T
N = RART = I.

Since the product of two lower-triangular matrices is again lower
triangular (show this on your own!), R is again lower-triangular.
Since the inverse of a lower-triangular matrix is again lower triangular
(show this on your own!), we can take

A = LLT, with L = R−1.

21

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

Symmetric QR factorization

We describe one algorithm for computing a symmetric QR factor-
ization which is very efficient and fairly easy to understand, called
Household tri-diagonalization.

Let A be a symmetric matrix

A =


a11 a12 · · · a1N
a21 a22 · · · a2N
...
aN1 aN2 · · · aNN

 ,
and set

x1 =


0
a21
a31
...
aN1

 , y1 =


0
r1
0
...
0

 , with r1 = ‖x1‖2.

From x1 and y1 we create the Householder matrix

H1 = I− 2u1u
T
1 , u1 =

x1 − y1

‖x1 − y1‖2
.

Then by direct calculation, you can check that

A2 = H1AH1 =


a11 r1 0 · · · 0
r1 ã22 ã23 · · · ã2N
0 ã32 ã33 · · · ã3N
...
0 ãN2 ãN3 · · · ãNN

 .
So applying H1 on either side eliminates all but two entries in both
the first row and first column of A.

22

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

Notice also that the N ×N matrix H1 is orthnormal, as

HT
1H1 = (I− 2u1u

T
1)(I− 2u1u

T
1)

= I− 4u1u
T
1 + 4u1u

T
1u1u

T
1

= I,

where the last equality follows since uT
1u1 = ‖u1‖22 = 1.

We can continue this process on the (N − 1) × (N − 1) submatrix
on the lower right. We take

x2 =


0
0
ã32
ã42
...
ãN2

 , y2 =


0
0
r2
0
...
0

 , with r2 = ‖x2‖2,

and

H2 = I− 2u2u
T
2 , u2 =

x2 − y2

‖x2 − y2‖2
.

Then

A3 = H2A2H2 =


a11 r1 0 0 · · · 0
r1 ã22 r2 0 · · · 0
0 r2 â33 â34 · · · â3N
0 0 â43 â44 · · · â4N
...
0 0 âN3 âN4 · · · âNN


Repeating this procedure N − 1 times gives us a tri-diagonal matrix

T = AN = HNHN−1 · · ·H1AH1H2 · · ·HN = QTAQ.

where
Q = H1H2 · · ·HN .

Note that since all of the Hn are orthonormal, so is Q.

23

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

Technical Details: Solving Toeplitz systems and
the Levinson-Durbin algorithm

We start by looking at how to solve Hv = y for a very particular
right-hand side. Consider

h0 h1 · · · hN−1
h1 h0 h1 · · · hN−2
h2 h1 h0 · · · hN−3
...

hN−1 · · · · · · h0



v[1]
v[2]

...

...
v[N]

 =


h1

h2
...

hN−1
hN

 . (7)

Here the first N − 1 entries of the “observation” vector y match the
last N − 1 entries in the first column of H . This system is special-
ized, but not at all contrived — (7) are called the Yule-Walker
equations, and appear in many different places in statistical signal
processing. Moreover, solving systems with general right-hand sides
solve systems of the form (7) as an intermediate step.

The crux of the Levinson-Durbin algorithm relies upon a seemingly
innocuous fact. Let J be the N × N exchange matrix (also called
the counter identity):

J =


0 0 · · · 0 0 1
0 0 · · · 0 1 0
0 0 · · · 1 0 0
... ...
1 0 · · · 0

 .
Applying J to a vector x reverses the entries in x. For example,0 0 1

0 1 0
1 0 0

 5
−1
7

 =

 7
−1
5

 .

24

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

It should be clear that JT = J and J2 = JJ = I.

Applying J to the left of a matrix reverses all of its columns, while
applying J to the right reverses the rows. In particular, if H is a
symmetric Toeplitz matrix, then

JH =


0 0 · · · 0 0 1
0 0 · · · 0 1 0
0 0 · · · 1 0 0
... ...
1 0 · · · 0



h0 h1 · · · hN−1
h1 h0 h1 · · · hN−2
h2 h1 h0 · · · hN−3
...

hN−1 · · · · · · h0



=


hN−1 hN−2 · · · h0

hN−2 hN−3 hN−4 · · · h1

hN−3 hN−4 hN−5 · · · h2
... ...
h0 h1 · · · hN−1,


and

JHJ =


hN−1 hN−2 · · · h0

hN−2 hN−3 hN−4 · · · h1

hN−3 hN−4 hN−5 · · · h2
... ...
h0 h1 · · · hN−1,




0 0 · · · 0 0 1
0 0 · · · 0 1 0
0 0 · · · 1 0 0
... ...
1 0 · · · 0



=


h0 h1 · · · hN−1
h1 h0 h1 · · · hN−2
h2 h1 h0 · · · hN−3
...

hN−1 · · · · · · h0


= H .

25

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

So symmetric Toeplitz matrices obey the identity

H = JHJ

⇒ JH = HJ (since JJ = I)

That is, N ×N symmetric Toeplitz matrices commute with J.

Also note that

H−1 = (JHJ)−1

= J−1H−1J−1

= JH−1J (since J−1 = J),

and so H−1 commutes with J as well:

H−1J = JH−1.

Important note: Even though H−1 does commute with J, it is
not necessarily Toeplitz. Matrices which commute with J are called
persymmetric. So what the calculations above are telling us is
that all Toeplitz matrices are persymmetric, all inverses of Toeplitz
matrices are persymmetric, but inverses of Toeplitz matrices are not
(in general) Toeplitz.

Let’s see how to take advantage of these properties in solving the
Yule-Walker equations. Start by parititioning off the last row and
column:

h0 h1 h2 · · · hN−1
h1 h0 h1 · · · hN−2
h2

.
... . . . h1

hN−1 hN−2 · · · h0




v[1]
v[2]

...
v[N − 1]
v[N]

 =


h1

h2
...

hN−1
hN



26

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

which we re-write as[
HN−1 JhN−1

(JhN−1)
T h0

] [
z
β

]
=

[
hN−1
hN

]
where

• HN−1 consists of the first N − 1 rows and columns of H (this
is also Toeplitz)

• hN−1 ∈ RN−1 contains h1, . . . , hN−1

Now we would like to solve for the vector z ∈ RN−1 and the scalar
β. We have3

HN−1z + βJhN−1 = hN−1 (8)

hT
N−1Jz + βh0 = hN . (9)

Solving the first equation yields

z = H−1
N−1(hN−1 − βJhN−1)

= H−1
N−1hN−1 − βH

−1
N−1JhN−1

= H−1
N−1hN−1 − βJH−1

N−1hN−1 (since H−1
N−1 commutes with J).

Suppose we already had the solution to the smaller system

vN−1 = H−1
N−1hN−1

in hand. Then we could compute z using

z = vN−1 − βJvN−1,

3Here we use the fact that JT = J.

27

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

and then plugging this into (9) gives us the scalar equation

hT
N−1J(vN−1 − βJvN−1) + βh0 = hN

⇒ β =
hN − hT

N−1JvN−1

h0 − hT
N−1vN−1

,

and so we take
z = vN−1 − βJvN−1,

and set

vN =

[
z
β

]
= H−1

N hN .

Moral: Given the solution to

HN−1vN−1 = hN−1

the solution to
HNvN = hN

can be computed in O(N) time (a few inner products).

So to solve the N × N system of equations HvN = hN , we work
“from the ground up”, first solving the 1× 1 system

H1v1 = h1,

then using the solution of this to solve the 2× 2 system

H2v2 = h2,

28

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

and then using the solution toHN−1vN−1 = hN−1 to solve theN×N
system4

HNvN = hN .

Adding together the computational costs at each stage:

Total cost = (some constant)(1 + 2 + · · · + N − 1 + N)

= O(N 2).

General right-hand sides

Solving for a general right-hand side is not much harder — it just
takes twice the work. (And 2N 2 still beats N 3 every day of the
week.)

To solve
Hx = y

we again subdivide it into sections:[
HN−1 JhN−1

(JhN−1)
T h0

] [
w
α

]
=

[
yN−1
yN

]
,

and so

HN−1w + αJhN−1 = yN−1
hT
N−1Jw + αh0 = yN .

Solving the first equation:

w = H−1
N−1yN−1 − αJH−1

N−1hN−1.

4By definition, HN = H .

29

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

Now suppose we have the following solutions in hand:

xN−1 = H−1
N−1yN−1, and

vN−1 = H−1
N−1hN−1.

Then we can again quickly solve for w and α:

w = xN−1 − αJvN−1,

with

α =
yN − hT

N−1JxN−1

h0 − hT
N−1vN−1

.

So given the solutions to

HN−1xN−1 = yN−1
HN−1vN−1 = hN−1,

the solution to
HNxN = yN ,

(and also the solution to HNvN = hN) can be computed in O(N)
time.

Moral: Solving the N ×N symmetric Toeplitz system

Hx = y

can be done in O(N 2) time.

What we have done above is easily extended to non-symmetric Toeplitz
systems as well.

30

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 10:57, December 5, 2019

