
Total Least-Squares

Our main approach thus far to “solving” y ≈ Ax is to optimize

minimize
x

‖y −Ax‖2
2.

Thought of another way, if we can’t find a x such that y = Ax
exactly, we are looking for the smallest possible perturbation we could
add to y so that there is an exact solution. Mathematically, the
standard least-squares program above is equivalent to solving

minimize
∆y,x

‖∆y‖2
2 subject to (y + ∆y) = Ax.

This reformulation makes it clear that least-squares implicitly as-
sumes that all of the error (i.e. all of the reasons we can’t find an
exact solution) lies in the measured data y.

But what if the entries of A are also subject to error? That is, how
can we account for modeling error as well as measurement error?
Total least-squares (TLS) is a framework for doing exactly this in
a principled manner. TLS finds the smallest perturbations ∆y,∆A
such that

(y + ∆y) = (A + ∆A)x

has an exact solution. It does this by solving

minimize
∆A,∆y,x

‖∆A‖2
F + ‖∆y‖2

2 subject to (y+ ∆y) = (A+ ∆A)x,

where ‖∆A‖2
F is the Frobenius norm of ∆A and is given by

‖∆A‖2
F =

M∑
m=1

N∑
n=1

|∆A[m,n]|2.
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Example: 1D linear regression

Say we are given a set of points

(a1, y1), (a2, y2), · · · , (aM , yM)

Suppose that the goal is to find the “best” line that fits these points.
(For simplicity, we will only consider lines that pass through the
origin.) That is, we are looking for the slope x such that the amx
are as close to the ym as possible.

The standard least-squares framework models this problem as fol-
lows. We observe

ym = amx + noise,

or in matrix form,

y =


a1

a2
...
aM

x + noise.

The solution is of course

x̂ = (ATA)−1ATy =

∑M
m=1 amym∑M
m=1 a

2
m

.

This solution minimizes the size of the residual

‖r‖2
2 = ‖y −Ax‖2

2 =
M∑

m=1

|ym − amx|2.

Geometrically, we are choosing the slope that minimizes the sum of
the squares of the vertical distances of the points to the line we
choose to approximate them:
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In contrast, the TLS estimate (which we will see how to compute
below) minimizes the distance in the plane of the points to the line
we choose:

This distance includes changes in both the am and ym.

69

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 23:01, November 5, 2019



Solving TLS – Part I

We will assume that A is an M × N matrix, with M > N , and
rank(A) = N (i.e. A is overdetermined with full column rank).
The problem only really makes sense if rank(A) < M , otherwise
there is always an exact solution. By being careful with the details,
the method we present here can also be extended to the case where
rank(A) < N < M , but we will leave it to you to fill in those gaps.

We want to find ∆A,∆y,x such that

(y + ∆y) = (A + ∆A)x,

for ∆y,∆A of minimal size. Rewrite this as

(A + ∆A)x− (y + ∆y) = 0

⇒
[
A + ∆A y + ∆y

] [ x
−1

]
= 0

⇒ (C + ∆)

[
x
−1

]
= 0

where
C =

[
A y

]
, ∆ =

[
∆A ∆y

]
.

Note that both C and ∆ are M × (N + 1) matrices.

The result of the progression of equations above says that we are

looking for a ∆ (of minimal size) such that there is a vector

[
x
−1

]
in the nullspace of C + ∆. Since

v ∈ Null(C + ∆)⇔ αv ∈ Null(C + ∆) for all α ∈ R,

and x in arbitrary, we are really just asking that C + ∆ has a
nullspace; as long as there is at least one vector in the nullspace
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whose last entry is nonzero, we can find a vector of the required form
just by normalizing. In short, this means that our task is to find ∆
such that the M × (N + 1) matrix C + ∆ is rank deficient, that
is rank(C + ∆) < N + 1.

Put another way, we want to solve the optimization program

minimize
∆

‖∆‖2
F subject to rank(C + ∆) = N.

Making the substitution X = C + ∆, this is equivalent to solving

minimize
X

‖C −X‖2
F subject to rank(X) = N,

and then taking ∆̂ = X̂ −C.

This is a low-rank approximation problem.1 We now consider how
to solve problems of this form (which arise in many other important
contexts).

The SVD and Matrix Approximation

Let A be an M ×N matrix with rank R. We are often interested in
determining the closest matrix toA that has rank r2? More precisely,
we would like to solve

minimize
X

‖A−X‖2
F subject to rank(X) = r. (1)

The functional above is standard least-squares, but the constraint
set (the set of rank-r matrices) is a complicated entity. Neverthe-
less, as with many things in this class, the SVD reveals the solution
immediately.
1Or at least a “lower rank” approximation problem.
2We will assume that r < R, as for r = R the answer is easy, and for
R < r ≤ min(M,N) the question is not well-posed.
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Low-rank approximation.
Let A be a matrix with SVD

A = UΣV T =
R∑

p=1

σpupv
T
p .

Then (1) is solved simply by truncating the SVD:

X̂ =
r∑

p=1

σpupv
T
p = U rΣrV

T
r ,

where U r contains the first r columns of U , V r contains the first
r columns of V , and Σr is the first r columns and r rows of Σ.

The framed result above, known as the Eckart-Young theorem, is an
immediate consequence of the following lemma.

Subspace Approximation Lemma. For fixed A with SVD
A = UΣV T, the optimization program

minimize
Q:M×r
Θ:r×N

‖A−QΘ‖2
F subject to QTQ = I, (2)

has solution

Q̂ = U r,

Θ̂ = UT
rA,

where U r =
[
u1 u2 · · · ur

]
contains the first r columns of U .

We prove this lemma in the technical details section at the end of
the notes. To see how it implies the Eckart-Young theorem, we can
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interpret the search overM×r matricesQwith orthonormal columns
as a search over all possible column spaces of dimension r. Then the
search over Θ finds the best linear combinations in a column spaces
to approximate the columns of A. Since any rank-r matrix can be
represented this way, the optimization program (2) is equivalent to

(1); if Q̂, Θ̂ solve (2), then Â = Q̂Θ̂ solves (1).

Also note that

Θ̂ = UT
rUΣV T =

[
I 0

]
ΣV T,

where I is the r × r identity matrix, and 0 is a r × (R − r) matrix
of zeros. This matrix of all zeros has the same effect as removing all
but the first r terms along the diagonal of Σ and all but the first r
rows of V T. Thus

Q̂Θ̂ = U r

[
I 0

]
ΣV T = U rΣrV

T
r .

What is the error between A and its best rank-r approximation Â?
Well,

A− Â =
R∑

p=r+1

σpupv
T
p ,

and so the error matrix has singular values σr+1, . . . , σR. Since the
Frobenius norm (squared) can be calculated by summing the squares
of the singular values,

‖A− Â‖2
F =

R∑
p=r+1

σ2
p.
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Solving TLS – Part II

Recall that the TLS problem reduced to solving a problem of the
form

minimize
X

‖C −X‖2
F subject to rank(X) = N,

and then taking ∆̂ = X̂ −C. In light of our discussion above, we
take the SVD of C,

C = WΓZT =
N+1∑
n=1

γnwnz
T
n ,

and create X̂ by leaving out the last term in the sum above3:

X̂ =
N∑
n=1

γnwnz
T
n .

Then
∆̂ = X̂ −C = −γN+1wN+1z

T
N+1.

Now we are ready to construct the actual estimate x̂. Recall that we
want a vector such that

(C + ∆̂)

[
x
−1

]
= 0, meaning X̂

[
x
−1

]
= 0.

The null space of X̂ is (by construction) simply the span of zN+1,
meaning we need to find a scalar α such that[

x
−1

]
= α zN+1.

3If C has fewer than N + 1 non-zero singular values, then it is already rank
deficient, and we can take X̂ = C ⇒ ∆̂ = 0.
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Thus we can take

x̂TLS =
−1

zN+1[N + 1]
·


zN+1[1]
zN+1[2]

...
zN+1[N ]

 .

If it happens that zN+1(N + 1) = 0, this means ∆̂y = 0, and we
would need an x such that

(A + ∆̂A)x = y.

Such an x may or may not exist (and probably doesn’t), so in this
case there is no TLS solution.

In the special case where the smallest singular value of C =
[
A y

]
is not unique, i.e.

γ1 ≥ γ2 ≥ γq > γq+1 = γq+2 = · · · = γN+1, for some q < N,

then the TLS solution may not be unique. We take

Z ′ =
[
zq+1 zq+2 · · · zN+1

]
,

and try to find a vector in the span that has the right form; any
vector x such that[

x
−1

]
∈ Span ({zq+1, . . . ,zN+1})

is equally good. All we need is a β such that the last entry of Z ′β
is equal to −1.
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Principal Components Analysis

Principal Components Analysis (PCA) is a standard technique for
dimensionality reduction of data sets. It is a way to automat-
ically find a subspace which approximates the data. It is used
everywhere in signal processing, machine learning, and statistics.

There are actually two equivalent ways to think about PCA. The first
is statistical: we are trying to find a transform that is carefully tuned
to the (second-order) statistics of the data. The second perspective,
which is what we will adopt in this course, is more geometrical: given
a set of vectors, we are trying to find a subspace of a certain dimension
that comes closest to containing this set.

Specifically, suppose that we have data points x1, . . . ,xN ∈ RD, and
want to find the K-dimensional affine space (subspace plus offset)
that comes closest to containing them. Here is a picture4

Example

From Chapter 14 of Hastie, Tibshirani, and Friedman

16

4From Ch. 14 of Tibshirani and Hastie’s Elements of Statistical Learning.
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Our goal is to find an offsetµ ∈ RD and a matrixQwith orthonormal
columns such that

xn ≈ µ +Qθn for all n = 1, . . . , N,

for some θn ∈ RK. We cast this as the following optimization prob-
lem. Given x1, . . . ,xN , solve

minimize
µ,Q,{θn}

N∑
n=1

‖xn − µ−Qθn‖2
2 subject to QTQ = I.

Note that if we fix µ and define x̃n = xn − µ, then we can recast
the optimization with respect to Q and the θn as

minimize
Q,{θn}

N∑
n=1

‖x̃n −Qθn‖2
2 subject to QTQ = I.

If X̃ and Θ denote the matrices whose columns are given by x̃1, . . . , x̃n

and θ1, . . . ,θn respectively, then we can also write this as

minimize
Q:D×K
Θ:K×N

‖X̃ −QΘ‖2
F subject to QTQ = I.

This is exactly the optimization problem that we looked at previ-
ously in our Subspace Approximation Lemma! Thus the solution is
given by computing the SVD of X̃ = UΣV and then taking as our
solution

Q̂ = UK,

Θ̂ = UT
KX̃,

where UK =
[
u1 u2 · · · uK

]
contains the first K columns of U .
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Finally, let us return to the question of how to set µ. For any given
µ, the solution forQ and Θ is given by the Subspace Approximation
Lemma. This results in setting

θn = QT(xn − µ).

Plugging this in for θn in our objective function, we have that

xn − µ−Qθn = xn − µ−QQT(xn − µ)

= (I−QQT)(xn − µ).

Hence, the problem of selecting µ reduces to the optimization prob-
lem

minimize
µ

N∑
n=1

‖(I−QQT)(xn − µ)‖2
2

The vector µ is unconstrained; we can solve for the optimal µ by
taking a gradient and setting it equal to zero. To make this easier,
note that

‖(I−QQT)(xn − µ)‖2
2 = (xn − µ)T (I−QQT)(xn − µ)

by simply expanding out the norm squared as an inner product and
then using the fact that I−QQT is a projector, i.e., it is symmetric
and (I−QQT)2 = I−QQT. Thus, by taking a gradient and setting
it equal to zero we have

0 = −2
N∑
n=1

(I−QQT)(xn − µ)

= −2(I−QQT)

((
N∑
n=1

xn

)
−Nµ

)
.
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We can satisfy this condition by taking the offset µ to be the sample
mean (average of all the observed vectors):

µ̂ =
1

N

N∑
n=1

xn.

Note that this choice is not unique – any choice of µ that results in∑
(xn − µ) living in the nullspace of I −QQT would also suffice –

but µ is the easy and obvious choice, and also what is usually done
in practice, because it makes computing the solution to the PCA
problem straightforward.

Computing the PCA solution

Specifically, in practice you would typically proceed by first comput-
ing the mean µ̂ of your data as described above. Given µ̂, you can
then form the matrix X̃ whose columns are given by

x̃n = xn − µ̂.

Alternatively, if you know a priori that your columns of zero mean (or
should have zero mean) based on the underlying process generating

the data, then you can skip this step, setting X̃ = X .

In either case, once you have formed X̃ , you simply compute the
SVD of X̃ = UΣV and then set

Q̂ = UK,

θ̂n = UT
Kx̃n,

where UK =
[
u1 u2 · · · uK

]
contains the first K columns of U .

We can think of θ̂n as a representation of xn is a K-dimensional
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subspace, with Q̂ giving us a basis for that subspace (which is useful
for projecting vectors x ∈ RN into the subspace).

Note that if you look up a discussion of PCA in most textbooks or
online, you will typically see a slightly different presentation. Specif-
ically, most texts describe an approach to the problem that involves
forming the matrix

S =
N∑
n=1

(xn − µ̂)(xn − µ̂)T,

taking and eigenvalue decomposition S = V ΛV T, and then taking

Q =
[
v1 v2 · · · vK

]
,

where v1, . . . ,vK are the eigenvectors of S corresponding to the K
largest eigenvalues.

This approach is completely equivalent to our approach above.5

The reason that PCA is typically presented in this was is that S
can be interpreted as a scaled version of an empirical estimate of
the covariance matrix for the underlying distribution generating the
data. While this provides a nice connection with the other (statisti-
cal) interpretation of PCA, I personally find the SVD approach more
intuitive. In PCA, we are simply trying to find a low-rank approx-
imation to our dataset, which is directly and optimally handled by
computing a truncated SVD.

5Recall the relationship between the SVD of X̃ and the eigendecomposition

of X̃X̃
T
.
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Technical Details: Subspace Approx. Lemma

We prove the subspace approximation lemma from above. First,
with Q fixed, we can break the optimization over Θ into a series of
least-squares problems. Let a1, . . . ,aN be the columns of A, and
θ1, . . . ,θN be the columns of Θ. Then

minimize
Θ

‖A−QΘ‖2
F

is exactly the same as

minimize
θ1,...,θN

N∑
n=1

‖an −Qθn‖2
2.

The above is our classic closest point problem, and is optimized by
taking θn = QTan (since the columns of Q are orthonormal). Thus
we can write the original problem (2) as

minimize
Q:M×r

N∑
n=1

‖an −QQTan‖2
2 subject to QTQ = I,

and then take Θ̂ = Q̂
T
A.

Expanding the functional and using the fact that (I − QQT)2 =
(I−QQT), we have

N∑
n=1

‖an −QQTan‖2
2 =

N∑
n=1

aT
n (I−QQT)an

=
N∑
n=1

‖an‖2
2 − aT

nQQ
Tan.
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Since the first term does not depend onQ, our optimization program
is equivalent to

maximize
Q:M×r

N∑
n=1

aT
nQQ

Tan subject to QTQ = I.

Now recall that for any vector v, 〈v,v〉 = trace(vvT). Thus

N∑
n=1

anQQ
Tan =

N∑
n=1

trace(QTana
T
nQ)

= trace

(
QT

(
N∑
n=1

ana
T
n

)
Q

)
= trace

(
QT(AAT)Q

)
.

The matrix AAT has eigenvalue decomposition

AAT = UΣ2UT,

where U and Σ come from the SVD of A (we will take U to be
M ×M , possible adding zeros down the diagonal of Σ2). Now

trace
(
QT(AAT)Q

)
= trace

(
QTUΣ2UTQ

)
= trace

(
W TΣ2W

)
,

whereW = UTQ. Notice thatW also has orthonormal columns, as
W TW = QTUUTQ = QTQ = I. Thus our optimization program
has become

maximize
W :M×r

trace(W TΣ2W ) subject to W TW = I.
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After we solve this, we can take any Q̂ such that Ŵ = UTQ̂.

This last optimization program is equivalent to a simple linear pro-
gram that is solvable by inspection. Let w1, . . . ,wr be the columns
of W . Then

trace(W TΣ2W ) =
r∑

p=1

wT
p Σ2wp

=
r∑

p=1

M∑
m=1

|wp[m]|2σ2
m

=
M∑

m=1

h[m]σ2
m, where h[m] =

r∑
p=1

|wp[m]|2.

Notice that

h[m] =
r∑

p=1

|W [p,m]|2

is a sum of the squares of a row of W . Since the sum of the squares
of every column of W is one, the sum of the squares of every entry
in W must be r, and so

M∑
m=1

h[m] = r.

It is clear that h[m] is non-negative, but it also true that h[m] ≤ 1.
Here is why: since the columns of W are orthonormal, they can be
considered as part of an orthonormal basis for RM . That is, there is
a M × (M − r) matrix W 0 such that the M ×M matrix

[
W W 0

]
has both orthonormal columns and orthonormal rows — thus the
sum of the squares of each row are equal to one. Thus the sum of
the squares of the first r entries cannot be larger than this.
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Thus the maximum value trace(W TΣ2W ) can take is given by the
linear program

maximize
h∈RM

M∑
m=1

h[m]σ2
m subject to

M∑
m=1

h[m] = r, 0 ≤ h[m] ≤ 1.

We can intuit the answer to this program. Since all of the σ2
m and

all of the h[m] are positive, we want to have as much weight as
possible assigned to the largest singular values. Since the weights are
constrained to be less than 1, this simply means we “max out” the
first r terms; the solution to the program above is

ĥ[m] =

{
1, m = 1, . . . , r

0, m = r + 1, . . . ,M.

This means that the sum of the squares of the first r rows in Ŵ
are equal to one, while the rest are zero. There might be many such
matrices that fit this bill, but one of them is

Ŵ =

[
I
0

]
,

where above, I is the r × r identity matrix, and 0 is a (M − r)× r
matrix of all zeros. It is easy to see that choosing

Q̂ =
[
u1 u2 · · ·ur

]
satisfies

UTQ̂ =

[
I
0

]
.
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