
Stability Analysis of the Pseudo-Inverse

We have seen that if we make indirect observations y ∈ RM of an
unknown vector x0 ∈ RN through a M × N matrix A, y = Ax0,
then applying the pseudo-inverse of A gives us the least squares
estimate of x0:

x̂ls = A†y = V Σ−1UTy,

whereA = UΣV T is the singular value decomposition (SVD) ofA.

We will now discuss what happens if our measurements contain noise
— the analysis here will be very similar to when we looked at the
stability of solving square sym+def systems, and in fact this is one
of the main reasons we introduced the SVD.

Suppose we observe
y = Ax0 + e,

where e ∈ RM is an unknown perturbation. Say that we again apply
the pseudo-inverse to y in an attempt to recover x:

x̂ls = A†y = A†Ax0 +A†e

What effect does the presence of the noise vector e had on our es-
timate of x0? We answer this question by comparing x̂ls to the
reconstruction we would obtain if we used standard least-squares on
perfectly noise-free observations yclean = Ax0. This noise-free recon-
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struction can be written as

xpinv = A†yclean = A†Ax0

= V Σ−1UTUΣV Tx0

= V V Tx0

=
R∑
r=1

〈x0,vr〉vr.

The vector xpinv is the orthogonal projection of x0 onto the row space
(everything orthogonal to the null space) of A. If A has full column
rank (R = N), then xpinv = x0. If not, then the application of A
destroys the part of x0 that is not in xpinv, and so we only attempt
to recover the “visible” components. In some sense, xpinv contains
all of the components of x0 that A does not completely remove, and
has them preserved perfectly.

The reconstruction error (relative to xpinv is)

‖x̂ls − xpinv‖22 = ‖A†e‖22 = ‖V Σ−1UTe‖22. (1)

Now suppose for a moment that the error has unit norm, ‖e‖22 = 1.
Then the worst case for (1) is given by

maximize
e∈RM

‖V Σ−1UTe‖22 subject to ‖e‖2 = 1.

Since the columns of U are orthonormal, ‖UTe‖22 ≤ ‖e‖22, and the
above is equivalent to

max
β∈RR:‖β‖2=1

‖V Σ−1β‖22. (2)
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Also, for any vector z ∈ RR, we have

‖V z‖22 = 〈V z,V z〉 = 〈z,V TV z〉 = 〈z, z〉 = ‖z‖22,

since the columns of V are orthonormal. So we can simplify (2) to

maximize
β∈RR

‖Σ−1β‖22 subject to ‖β‖2 = 1.

The worst case β (you should verify this at home) will have a 1 in
the entry corresponding to the largest entry in Σ−1, and will be zero
everywhere else. Thus

max
β∈RR:‖β‖2=1

‖Σ−1β‖22 = max
r=1,...,R

σ−2r =
1

σ2
R

.

(Recall that by convention, we order the singular values so that σ1 ≥
σ2 ≥ · · · ≥ σR.)

Returning to the reconstruction error (1), we now see that

‖x̂ls − xpinv‖22 = ‖V Σ−1UTe‖22 ≤
1

σ2
R

‖e‖22.

Since U is an M × R matrix, it is possible when R < M that the
reconstruction error is zero. This happens when e is orthogonal to
every column of U , i.e. UTe = 0. Putting this together with the
work above means

0 ≤ 1

σ2
1

‖UTe‖22 ≤ ‖x̂ls − xpinv‖22 ≤
1

σ2
R

‖UTe‖22 ≤
1

σ2
R

‖e‖22.

Notice that if σR is small, the worst case reconstruction error can be
very bad.
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We can also relate the “average case” error to the singular values. Say
that e is additive Gaussian white noise, that is each entry e[m] is a
random variable independent of all the other entries, and distributed

e[m] ∼ Normal(0, ν2).

Then, as we have argued before, the average measurement error is

E[‖e‖22] = Mν2,

and the average reconstruction error1 is

E
[
‖A†e‖22

]
= ν2 · trace(A†

T
A†) = ν2 ·

(
1
σ21

+ 1
σ22

+ · · · + 1
σ2R

)
= 1

M

(
1
σ21

+ 1
σ22

+ · · · + 1
σ2R

)
· E[‖e‖22].

Again, if σR is tiny, 1/σ2
R will dominate the sum above, and the

average reconstruction error will be quite large.

Exercise: Let D be a diagonal R × R matrix whose diagonal
elements are positive. Show that the maximizer β̂ to

maximize
β∈RR

‖Dβ‖22 subject to ‖β‖2 = 1

has a 1 in the entry corresponding to the largest diagonal element of
D, and is 0 elsewhere.

1We are using the fact that if e is vector of iid Gaussian random vari-
ables, e ∼ Normal(0, ν2 I), then for any matrix M , E[‖Me‖22] =
ν2 trace(MTM ). We leave this as an exercise (or maybe a homework!)
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Stable Reconstruction with the Truncated SVD

We have seen that if A has very small singular values and we apply
the pseudo-inverse in the presence of noise, the results can be disas-
trous. But it doesn’t have to be this way. There are several ways
to stabilize the pseudo-inverse. We start be discussing the simplest
one, where we simply “cut out” the part of the reconstruction which
is causing the problems.

As before, we are given noisy indirect observations of a vector x
through a M ×N matrix A:

y = Ax + e. (3)

The matrix A has SVD A = UΣV T, and pseudo-inverse A† =
V Σ−1UT. We can rewrite A as a sum of rank-1 matrices:

A =
R∑
r=1

σrurv
T
r ,

whereR is the rank ofA, the σr are the singular values, and ur ∈ RM

and vr ∈ RN are columns of U and V , respectively. Similarly, we
can write the pseudo-inverse as

A† =
R∑
r=1

1

σr
vru

T
r .

Given y as above, we can write the least-squares estimate of x from
the noisy measurements as

x̂ls = A†y =
R∑
r=1

1

σr
〈y,ur〉vr. (4)
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As we can see (and have seen before) if any one of the σr are very
small, the least-squares reconstruction can be a disaster.

A simple way to avoid this is to simply truncate the sum (4), leaving
out the terms where σr is too small (1/σr is too big). Exactly how
many terms to keep depends a great deal on the application, as there
are competing interests. On the one hand, we want to ensure that
each of the σr we include has an inverse of reasonable size, on the
other, we want the reconstruction to be accurate (i.e. not to deviate
from the noiseless least-squares solution by too much).

We form an approximation A′ to A by taking

A′ =
R′∑
r=1

σrurv
T
r ,

for some R′ < R. Again, our final answer will depend on which R′

we use, and choosing R′ is often times something of an art. It is clear
that the approximationA′ has rankR′. Note that the pseudo-inverse
of A′ is also a truncated sum

A′† =
R′∑
r=1

1

σr
vru

T
r .

Given noisy data y as in (3), we reconstruct x by applying the
truncated pseudo-inverse to y:

x̂trunc = A′†y =
R′∑
r=1

1

σr
〈y,ur〉vr.
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How good is this reconstruction? To answer this question, we will
compare it to the noiseless least-squares reconstructionxpinv = A†yclean,
where yclean = Ax are “noiseless” measurements of x. The differ-
ence between these two is the reconstruction error (relative to xpinv)
as

x̂trunc − xpinv = A′†y −A†Ax
= A′†Ax +A′†e−A†Ax
= (A′† −A†)Ax +A′†e.

Proceeding further, we can write the matrix A′† −A† as

A′† −A† =
R∑

r=R′+1

− 1

σr
vru

T
r ,

and so the first term in the reconstruction error can be written as

(A′† −A†)Ax =
R∑

r=R′+1

− 1

σr
〈Ax,ur〉vr

=
R∑

r=R′+1

− 1

σr

〈
R∑
j=1

σj〈x,vj〉uj,ur

〉
vk

=
R∑

r=R′+1

− 1

σr

R∑
j=1

σj〈x,vj〉〈uj,ur〉vr

=
R∑

r=R′+1

−〈x,vr〉vr (since 〈ur,uj〉 = 0 unless j = r).

The second term in the reconstruction error can also be expanded
against the vr:

A′†e =
R′∑
r=1

1

σr
〈e,ur〉vr.
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Combining these expressions, the reconstruction error can be written

x̂trunc − xpinv =
R′∑
r=1

1

σr
〈e,ur〉vr︸ ︷︷ ︸ +

R∑
k=R′+1

−〈x,vk〉vk︸ ︷︷ ︸
= Noise error + Approximation error.

Since the vr are mutually orthogonal, and the two sums run over
disjoint index sets, the noise error and the approximation error will
be orthogonal. Also

‖x̂trunc − xpinv‖22 = ‖Noise error‖22 + ‖Approximation error‖22

=
R′∑
r=1

1

σ2
r

|〈e,ur〉|2 +
R∑

r=R′+1

|〈x,vr〉|2.

The reconstruction error, then, is signal dependent and will depend
on how much of the vector x is concentrated in the subspace spanned
by vR′+1, . . . ,vR. We will lose everything in this subspace; if it
contains a significant part of x, then there is not much least-squares
can do for you.

The worst-case noise error occurs when e is aligned with uR′:

‖Noise error‖22 =
R′∑
r=1

1

σ2
r

|〈e,ur〉|2 ≤
1

σ2
R′
· ‖e‖22.

As seen before, if the error e is random, this bound is a bit pes-
simistic. Specifically, if each entry of e is an independent identically
distributed Normal random variable with mean zero and variance ν2,
then the expected noise error in the reconstruction will be

E[‖Noise error‖22] =
1

M

(
1

σ2
1

+
1

σ2
2

+ · · · + 1

σ2
R′

)
· E[‖e‖22].
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Stable Reconstruction using Tikhonov
Regularization

Tikhonov2 regularization is another way to stabilize the least-squares
recovery. It has the nice features that: 1) it can be interpreted using
optimization, and 2) it can be computed without direct knowledge
of the SVD of A.

Recall that we motivated the pseudo-inverse by showing that x̂LS =
A†y is a solution to

minimize
x∈RN

‖y −Ax‖22. (5)

When A has full column rank, x̂LS is the unique solution, otherwise
it is the solution with smallest energy. When A has full column
rank but has singular values which are very small, huge variations
in x (in directions of the singular vectors vk corresponding to the
tiny σk) can have very little effect on the residual ‖y −Ax‖22. As
such, the solution to (5) can have wildly inaccurate components in
the presence of even mild noise.

One way to counteract this problem is to modify (5) with a regu-
larization term that penalizes the size of the solution ‖x‖22 as well
as the residual error ‖y −Ax‖22:

minimize
x∈RN

‖y −Ax‖22 + δ‖x‖22. (6)

The parameter δ > 0 gives us a trade-off between accuracy and
regularization; we want to choose δ small enough so that the residual

2Andrey Tikhonov (1906-1993) was a 20th century Russian mathematician.
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for the solution of (6) is close to that of (5), and large enough so that
the problem is well-conditioned.

Just as with (5), which is solved by applying the pseudo-inverse to
y, we can write the solution to (6) in closed form. To see this, recall
that we can decompose any x ∈ RN as

x = V α + V 0α0,

where V is the N × R matrix (with orthonormal columns) used in
the SVD of A, and V 0 is a N ×N − R matrix whose columns are
an orthogonal basis for the null space of A. This means that the
columns of V 0 are orthogonal to each other and all of the columns
of V . Similarly, we can decompose y as

y = Uβ +U 0β0,

whereU is theM×R matrix used in the SVD ofA, and the columns
of U 0 are an orthogonal basis for the left null space of A (everything
in RM that is not in the range of A).

For any x, we can write

y −Ax = Uβ +U 0β −UΣV T(V α + V 0α0)

= U (β −Σα) +U 0β.

Since the columns of U are orthonormal, UTU = I, and also
UT

0U 0 = I, and UTU 0 = 0, we have

‖y −Ax‖22 = 〈U (β −Σα) +U 0β0,U (β −Σα) +U 0β0〉
= ‖β −Σα‖22 + ‖β0‖22,

and
‖x‖22 = ‖α‖22 + ‖α0‖22.
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Using these facts, we can write the functional in (6) as

‖y −Ax‖22 + δ‖x‖2 = ‖β −Σα‖22 + δ‖α‖22 + δ‖α0‖22. (7)

We want to choose α and α0 that minimize (7). It is clear that, just
as in the standard least-squares problem, we need α0 = 0. The part
of the functional that depends on α can be rewritten as

‖β −Σα‖22 + δ‖α‖22 =
R∑
k=1

(β[k]− σkα[k])2 + δα[k]2. (8)

We can minimize this sum simply by minimizing each term indepen-
dently. Since

d

dα[k]

[
(β[k]− σkα[k])2 + δα[k]2

]
= −2β[k]σk + 2σ2

kα[k] + 2δα[k],

we need
α[k] =

σk
σ2
k + δ

β[k].

Putting this back in vector form, (8) is minimized by

α̂tik = (Σ2 + δI)−1Σβ,

and so the minimizer to (6) is

x̂tik = V α̂tik

= V (Σ2 + δI)−1ΣUTy. (9)

We can get a better feel for what Tikhonov regularization is doing
by comparing it directly to the pseudo-inverse. The least-squares
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reconstruction x̂ls can be written as

x̂ls = V Σ−1UTy

=
R∑
r=1

1

σr
〈y,ur〉vr,

while the Tikhonov reconstruction x̂tik derived above is

x̂tik =
R∑
r=1

σr
σ2
r + δ

〈y,ur〉vr. (10)

Notice that when σr is much larger than δ,

σr
σ2
r + δ

≈ 1

σr
, σr � δ,

but when σr is small
σr

σ2
r + δ

≈ 0, σr � δ.

Thus the Tikhonov reconstruction modifies the important parts (com-
ponents where the σr are large) of the pseudo-inverse very little, while
ensuring that the unimportant parts (components where the σr are
small) affect the solution only by a very small amount. This damp-
ing of the singular values, is illustrated below.

σr
σ2r+δ

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

σr

60

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 21:13, November 3, 2019



Above, we see the damped multipliers σr/(σ2
r + δ) versus σr for

δ = 0.1 (blue), δ = 0.05 (red), and δ = 0.01 (green). The black
dotted line is 1/σr, the least-squares multiplier. Notice that for large
σr (σr > 2

√
δ, say), the damping has almost no effect.

This damping makes the Tikhonov reconstruction exceptionally sta-
ble; large multipliers never appear in the reconstruction (10). In fact
it is easy to check that

σr
σ2
r + δ

≤ 1

2
√
δ

no matter the value of σr.

Tikhonov Error Analysis

Given noisy observations y = Ax0 + e, how well will Tikhonov reg-
ularization work? The answer to this questions depends on multiple
factors including the choice of δ, the nature of the perturbation e,
and how well x0 can be approximated using a linear combination
of the singular vectors vr corresponding to the large (relative to δ)
singular values. Since a closed-form expression for the solution to (6)
exists, we can quantify these trade-offs precisely.

We compare the Tikhonov reconstruction to the reconstruction we
would obtain if we used standard least-squares on perfectly noise-
free observations yclean = Ax0. This noise-free reconstruction can
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be written as

xpinv = A†yclean = A†Ax0

= V Σ−1UTUΣV Tx0

= V V Tx0

=
R∑
r=1

〈x0,vr〉vr.

The vector xpinv is the orthogonal projection of x0 onto the row space
(everything orthogonal to the null space) of A. If A has full column
rank, then xpinv = x0. If not, then the application of A destroys
the part of x0 that is not in xpinv, and so we only attempt to recover
the “visible” components. In some sense, xpinv contains all of the
components of x0 that we could ever hope to recover, and has them
preserved perfectly.

The Tikhonov regularized solution is given by

x̂tik =
R∑
r=1

σr
σ2
r + δ

〈y,ur〉vr

=
R∑
r=1

σr
σ2
r + δ

〈e,ur〉vr +
R∑
r=1

σr
σ2
r + δ

〈Ax0,ur〉vr

=
R∑
r=1

σr
σ2
r + δ

〈e,ur〉vr +
R∑
r=1

σ2
r

σ2
r + δ

〈x0,vr〉vr,

and so the reconstruction error, relative to the best possible recon-
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struction xpinv, is

x̂tik − xpinv =
R∑
r=1

σr
σ2
r + δ

〈e,ur〉vr +
R∑
r=1

(
σ2
r

σ2
r + δ

− 1

)
〈x0,vr〉vr

=
R∑
r=1

σr
σ2
r + δ

〈e,ur〉vr︸ ︷︷ ︸ +
R∑
r=1

−δ
σ2
r + δ

〈x0,vr〉vr︸ ︷︷ ︸
= Noise error + Approximation error.

The approximation error is signal dependent, and depends on δ.
Since the vr are orthonormal,

‖Approximation error‖22 =
R∑
r=1

δ2

(σ2
r + δ)2

|〈x0,vr〉|2.

Note that for the components much smaller than δ,

σ2
r � δ ⇒ δ2

(σ2
r + δ)2

≈ 1,

so this portion of the approximation error will be about the same as
if we had simply truncated these components.

For large components,

σ2
r � δ ⇒ δ2

(σ2
r + δ)2

≈ δ2

σ2
r

and so this portion of the approximation error will be very small.
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For the noise error energy, we have

‖Noise error‖22 =
R∑
r=1

(
σr

σ2
r + δ

)2

|〈e,ur〉|2

≤ 1

4δ

R∑
r=1

|〈e,ur〉|2

≤ 1

4δ
‖e‖22.

The worst-case error is more or less determined by the choice of δ.
The regularization makes the effective condition number of A about
1/(2
√
δ); no matter how small the smallest singular value is, the

noise energy will not increase by more than a factor of 1/(4δ) during
the reconstruction process.

As usual, the average case error is less pessimistic. If each entry of
e is an independent identically distributed Normal random variable
with mean zero and variance ν2, then the expected noise error in the
reconstruction will be

E
[
‖Noise error‖22

]
=

R∑
r=1

(
σr

σ2
r + δ

)2

E
[
|〈e,ur〉|2

]
= ν2 ·

R∑
r=1

(
σr

σ2
r + δ

)2

=
1

M
·
(

R∑
r=1

σ2
r

(σ2
r + δ)2

)
· E
[
‖e‖22

]
. (11)

Note that σ2r
(σ2r+δ)

2 ≤ min
(

1
σ2r
, 1
4δ

)
, so we can think of the error in

(11) as an average of the 1
σ2r

, with the large values simply replaced by

1/(4δ).
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A Closed Form Expression

Tikhonov regularization is in some sense very similar to the truncated
SVD, but with one significant advantage: we do not need to explicitly
calculate the SVD to solve (6). Indeed, the solution to (6) can be
written as

x̂tik = (ATA + δI)−1ATy. (12)

To see that the expression above is equivalent to (9), note that we
can write ATA as

ATA = V Σ2V T = V ′Σ′2V ′T,

where V ′ is N ×N ,
V ′ =

[
V V 0

]
,

and the N ×N diagonal matrix Σ′ is simply Σ padded with zeros:

Σ′ =

[
Σ 0
0 0

]
.

The verification of (12) is now straightforward:

(ATA + δI)−1ATy = (V ′Σ′2V ′T + δI)−1V ΣUTy

= V ′(Σ′2 + δI)−1V ′TV ΣUTy

= V ′(Σ′2 + δI)−1
[
ΣUTy

0

]
= V (Σ2 + δI)−1ΣUTy

= x̂tik.

The expression (12) holds for all M,N, and R. We will leave it as
an exercise to show that

(ATA + δI)−1ATy = AT(AAT + δI)−1y.
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The importance of not needing to explicitly compute the SVD is
significant when we are solving large problems. When A is large
(M,N > 105, say) it may be expensive or even impossible to con-
struct the SVD and compute with it explicitly. However, if it has
special structure (if it is sparse, for example), then it may take many
fewer than MN operations to compute a matrix vector productAx.

In these situations, a matrix free iterative algorithm can be used
to perform the inverse required in (12). A prominent example of such
an algorithm is conjugate gradients, which we will see later in
this course.
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