The Singular Value Decomposition

We are interested in more than just sym+def matrices. But the eigenvalue decompositions discussed in the last section of notes will play a major role in solving general systems of equations

$$
\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}, \quad \boldsymbol{y} \in \mathbb{R}^{M}, \quad \boldsymbol{A} \text { is } M \times N, \quad \boldsymbol{x} \in \mathbb{R}^{N} .
$$

We have seen that a symmetric positive definite matrix can be decomposed as $\boldsymbol{A}=\boldsymbol{V} \boldsymbol{\Lambda} \boldsymbol{V}^{\mathrm{T}}$, where \boldsymbol{V} is an orthogonal matrix $\left(\boldsymbol{V}^{\mathrm{T}} \boldsymbol{V}=\right.$ $\left.\boldsymbol{V} \boldsymbol{V}^{\mathrm{T}}=\mathbf{I}\right)$ whose columns are the eigenvectors of \boldsymbol{A}, and $\boldsymbol{\Lambda}$ is a diagonal matrix containing the eigenvalues of \boldsymbol{A}. Because both orthogonal and diagonal matrices are trivial to invert, this eigenvalue decomposition makes it very easy to solve systems of equations $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$ and analyze the stability of these solutions.

The singular value decomposition (SVD) takes apart an arbitrary $M \times N$ matrix \boldsymbol{A} in a similar manner. The SVD of a real-valued $M \times N$ matrix \boldsymbol{A} with $\operatorname{rank}^{1} R$ is

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathrm{T}}
$$

where

1. \boldsymbol{U} is an $M \times R$ matrix

$$
\boldsymbol{U}=\left[\begin{array}{l|l|l|l}
\boldsymbol{u}_{1} & \mid \boldsymbol{u}_{2} & |\cdots| & \boldsymbol{u}_{R}
\end{array}\right],
$$

whose columns $\boldsymbol{u}_{m} \in \mathbb{R}^{M}$ are orthonormal. Note that while $\boldsymbol{U}^{\mathrm{T}} \boldsymbol{U}=\mathbf{I}$, in general $\boldsymbol{U} \boldsymbol{U}^{\mathrm{T}} \neq \mathbf{I}$ when $R<M$. The columns of \boldsymbol{U} are an orthobasis for the range space of \boldsymbol{A}.

[^0]2. \boldsymbol{V} is an $N \times R$ matrix
$$
\boldsymbol{V}=\left[\boldsymbol{v}_{1}\left|\boldsymbol{v}_{2}\right| \cdots \mid \boldsymbol{v}_{R}\right],
$$
whose columns $\boldsymbol{v}_{n} \in \mathbb{R}^{N}$ are orthonormal. Again, while $\boldsymbol{V}^{\mathrm{T}} \boldsymbol{V}=$ I, in general $\boldsymbol{V} \boldsymbol{V}^{\mathrm{T}} \neq \mathbf{I}$ when $R<N$. The columns of \boldsymbol{V} are an orthobasis for the range space of $\boldsymbol{A}^{\mathrm{T}}$ (recall that Range $\left(\boldsymbol{A}^{\mathrm{T}}\right)$ consists of everything orthogonal to the nullspace of \boldsymbol{A}).
3. $\boldsymbol{\Sigma}$ is an $R \times R$ diagonal matrix with positive entries:
\[

\boldsymbol{\Sigma}=\left[$$
\begin{array}{cccc}
\sigma_{1} & 0 & 0 & \cdots \\
0 & \sigma_{2} & 0 & \cdots \\
\vdots & & \ddots & \\
0 & \cdots & \cdots & \sigma_{R}
\end{array}
$$\right]
\]

We call the σ_{r} the singular values of \boldsymbol{A}. By convention, we will order them such that $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{R}$.
4. The $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{R}$ are eigenvectors of the positive semi-definite matrix $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}$. Note that

$$
\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}=\boldsymbol{V} \boldsymbol{\Sigma} \boldsymbol{U}^{\mathrm{T}} \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathrm{T}}=\boldsymbol{V} \boldsymbol{\Sigma}^{2} \boldsymbol{V}^{\mathrm{T}}
$$

and so the singular values $\sigma_{1}, \ldots, \sigma_{R}$ are the square roots of the non-zero eigenvalues of $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}$.
5. Similarly,

$$
\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}=\boldsymbol{U} \boldsymbol{\Sigma}^{2} \boldsymbol{U}^{\mathrm{T}}
$$

and so the $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{R}$ are eigenvectors of the positive semidefinite matrix $\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}$. Since the non-zero eigenvalues of $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}$ and $\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}$ are the same, the σ_{r} are also square roots of the eigenvalues of $\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}$.

The rank R is the dimension of the space spanned by the columns of \boldsymbol{A}, this is the same as the dimension of the space spanned by the rows. Thus $R \leq \min (M, N)$. We say \boldsymbol{A} is full rank if $R=\min (M, N)$.

As before, we will often times find it useful to write the SVD as the sum of R rank-1 matrices:

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathrm{T}}=\sum_{r=1}^{R} \sigma_{r} \boldsymbol{u}_{r} \boldsymbol{v}_{r}^{\mathrm{T}} .
$$

When \boldsymbol{A} is overdetermined $(M>N)$, the decomposition looks like this

$$
[\boldsymbol{A}]=[\boldsymbol{U}]\left[\begin{array}{lll}
\sigma_{1} & & \\
& \ddots & \\
& & \\
& & \sigma_{R}
\end{array}\right]\left[\begin{array}{ll}
& \boldsymbol{V}^{\mathrm{T}} \\
&
\end{array}\right] .
$$

When \boldsymbol{A} is underdetermined $(M<N)$, the SVD looks like this $\left[\begin{array}{lll}\boldsymbol{A}\end{array}\right]=\left[\begin{array}{lll}\boldsymbol{U}\end{array}\right]\left[\begin{array}{lll}\sigma_{1} & & \\ & \ddots & \\ & & \sigma_{R}\end{array}\right]\left[\begin{array}{lll} & & \boldsymbol{V}^{\mathrm{T}} \\ & & \end{array}\right]$.

When \boldsymbol{A} is square and full rank $(M=N=R)$, the SVD looks like

$$
\left[\begin{array}{lll}
& \boldsymbol{A}
\end{array}\right]=\left[\begin{array}{ll}
\boldsymbol{U}
\end{array}\right]\left[\begin{array}{lll}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{N}
\end{array}\right]\left[\begin{array}{ll}
& \boldsymbol{V}^{\mathrm{T}} \\
&
\end{array}\right]
$$

The Least-Squares Problem

We can use the SVD to "solve" the general system of linear equations

$$
\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}
$$

where $\boldsymbol{y} \in \mathbb{R}^{M}, \boldsymbol{x} \in \mathbb{R}^{N}$, and \boldsymbol{A} is an $M \times N$ matrix.
Given \boldsymbol{y}, we want to find \boldsymbol{x} in such a way that

1. when there is a unique solution, we return it;
2. when there is no solution, we return something reasonable;
3. when there are an infinite number of solutions, we choose one to return in a "smart" way.

The least-squares framework revolves around finding an \boldsymbol{x} that minimizes the length of the residual

$$
\boldsymbol{r}=\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x} .
$$

That is, we want to solve the optimization problem

$$
\begin{equation*}
\underset{\boldsymbol{x} \in \mathbb{R}^{N}}{\operatorname{minimize}}\|\boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}\|_{2}^{2}, \tag{1}
\end{equation*}
$$

where $\|\cdot\|_{2}$ is the standard Euclidean norm. We will see that the SVD of \boldsymbol{A} :

$$
\begin{equation*}
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathrm{T}} \tag{2}
\end{equation*}
$$

plays a pivotal role in solving this problem.
To start, note that we can write any $\boldsymbol{x} \in \mathbb{R}^{N}$ as

$$
\begin{equation*}
\boldsymbol{x}=\boldsymbol{V} \boldsymbol{\alpha}+\boldsymbol{V}_{0} \boldsymbol{\alpha}_{0} \tag{3}
\end{equation*}
$$

Here, \boldsymbol{V} is the $N \times R$ matrix appearing in the SVD decomposition (2), and \boldsymbol{V}_{0} is a $N \times(N-R)$ matrix whose columns are orthogonal to one another and to the columns in \boldsymbol{V}. We have the relations

$$
\boldsymbol{V}^{\mathrm{T}} \boldsymbol{V}=\mathbf{I}, \quad \boldsymbol{V}_{0}^{\mathrm{T}} \boldsymbol{V}_{0}=\mathbf{I}, \quad \boldsymbol{V}^{\mathrm{T}} \boldsymbol{V}_{0}=\mathbf{0}
$$

You can think of \boldsymbol{V}_{0} as an orthobasis for the null space of \boldsymbol{A}. Of course, \boldsymbol{V}_{0} is not unique, as there are many orthobases for $\operatorname{Null}(\boldsymbol{A})$, but any such set of vectors will serve our purposes here. The decomposition (3) is possible since Range $\left(\boldsymbol{A}^{\mathrm{T}}\right)$ and $\operatorname{Null}(\boldsymbol{A})$ partition \mathbb{R}^{N} for any $M \times N$ matrix \boldsymbol{A}. Taking

$$
\boldsymbol{\alpha}=\boldsymbol{V}^{\mathrm{T}} \boldsymbol{x}, \quad \boldsymbol{\alpha}_{0}=\boldsymbol{V}_{0}^{\mathrm{T}} \boldsymbol{x}
$$

we see that (3) holds since

$$
\boldsymbol{x}=\boldsymbol{V} \boldsymbol{V}^{\mathrm{T}} \boldsymbol{x}+\boldsymbol{V}_{0} \boldsymbol{V}_{0}^{\mathrm{T}} \boldsymbol{x}=\left(\boldsymbol{V} \boldsymbol{V}^{\mathrm{T}}+\boldsymbol{V}_{0} \boldsymbol{V}_{0}^{\mathrm{T}}\right) \boldsymbol{x}=\boldsymbol{x}
$$

where we have made use of the fact that $\boldsymbol{V} \boldsymbol{V}^{\mathrm{T}}+\boldsymbol{V}_{0} \boldsymbol{V}_{0}^{\mathrm{T}}=\mathbf{I}$, because $\boldsymbol{V} \boldsymbol{V}^{\mathrm{T}}$ and $\boldsymbol{V}_{0} \boldsymbol{V}_{0}^{\mathrm{T}}$ are ortho-projectors onto complementary subspaces ${ }^{2}$ of \mathbb{R}^{N}. So we can solve for $\boldsymbol{x} \in \mathbb{R}^{N}$ by solving for the pair $\boldsymbol{\alpha} \in \mathbb{R}^{R}, \boldsymbol{\alpha}_{0} \in \mathbb{R}^{N-R}$.

Similarly, we can decompose \boldsymbol{y} as

$$
\begin{equation*}
\boldsymbol{y}=\boldsymbol{U} \boldsymbol{\beta}+\boldsymbol{U}_{0} \boldsymbol{\beta}_{0} \tag{4}
\end{equation*}
$$

where \boldsymbol{U} is the $M \times R$ matrix from the SVD decomposition, and \boldsymbol{U}_{0} is a $M \times(M-R)$ complementary orthogonal basis. Again,

$$
\boldsymbol{U}^{\mathrm{T}} \boldsymbol{U}=\mathbf{I}, \quad \boldsymbol{U}_{0}^{\mathrm{T}} \boldsymbol{U}_{0}=\mathbf{I}, \quad \boldsymbol{U}^{\mathrm{T}} \boldsymbol{U}_{0}=\mathbf{0}
$$

[^1]and we can think of \boldsymbol{U}_{0} as an orthogonal basis for everything in \mathbb{R}^{M} that is not in the range of \boldsymbol{A}. As before, we can calculate the decomposition above using
$$
\boldsymbol{\beta}=\boldsymbol{U}^{\mathrm{T}} \boldsymbol{y}, \quad \boldsymbol{\beta}_{0}=\boldsymbol{U}_{0}^{\mathrm{T}} \boldsymbol{y}
$$

Using the decompositions (2), (3), and (4) for $\boldsymbol{A}, \boldsymbol{x}$, and \boldsymbol{y}, we can write the residual $\boldsymbol{r}=\boldsymbol{y}-\boldsymbol{A x}$ as

$$
\begin{aligned}
\boldsymbol{r} & =\boldsymbol{U} \boldsymbol{\beta}+\boldsymbol{U}_{0} \boldsymbol{\beta}_{0}-\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathrm{T}}\left(\boldsymbol{V} \boldsymbol{\alpha}+\boldsymbol{V}_{0} \boldsymbol{\alpha}_{0}\right) \\
& =\boldsymbol{U} \boldsymbol{\beta}+\boldsymbol{U}_{0} \boldsymbol{\beta}_{0}-\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{\alpha} \quad\left(\text { since } \boldsymbol{V}^{\mathrm{T}} \boldsymbol{V}=\mathbf{I} \text { and } \boldsymbol{V}^{\mathrm{T}} \boldsymbol{V}_{0}=\mathbf{0}\right) \\
& =\boldsymbol{U}_{0} \boldsymbol{\beta}_{0}+\boldsymbol{U}(\boldsymbol{\beta}-\boldsymbol{\Sigma} \boldsymbol{\alpha}) .
\end{aligned}
$$

We want to choose $\boldsymbol{\alpha}$ that minimizes the energy of \boldsymbol{r} :

$$
\begin{aligned}
\|\boldsymbol{r}\|_{2}^{2}= & \left\langle\boldsymbol{U}_{0} \boldsymbol{\beta}_{0}+\boldsymbol{U}(\boldsymbol{\beta}-\boldsymbol{\Sigma} \boldsymbol{\alpha}), \boldsymbol{U}_{0} \boldsymbol{\beta}_{0}+\boldsymbol{U}(\boldsymbol{\beta}-\boldsymbol{\Sigma} \boldsymbol{\alpha})\right\rangle \\
= & \left\langle\boldsymbol{U}_{0} \boldsymbol{\beta}_{0}, \boldsymbol{U}_{0} \boldsymbol{\beta}_{0}\right\rangle+2\left\langle\boldsymbol{U}_{0} \boldsymbol{\beta}_{0}, \boldsymbol{U}(\boldsymbol{\beta}-\boldsymbol{\Sigma} \boldsymbol{\alpha})\right\rangle \\
& +\langle\boldsymbol{U}(\boldsymbol{\beta}-\boldsymbol{\Sigma} \boldsymbol{\alpha}), \boldsymbol{U}(\boldsymbol{\beta}-\boldsymbol{\Sigma} \boldsymbol{\alpha})\rangle \\
= & \left\|\boldsymbol{\beta}_{0}\right\|_{2}^{2}+\|\boldsymbol{\beta}-\boldsymbol{\Sigma}\|_{2}^{2}
\end{aligned}
$$

where the last equality comes from the facts that $\boldsymbol{U}_{0}^{\mathrm{T}} \boldsymbol{U}_{0}=\mathbf{I}, \boldsymbol{U}^{\mathrm{T}} \boldsymbol{U}=$ \mathbf{I}, and $\boldsymbol{U}^{\mathrm{T}} \boldsymbol{U}_{0}=\mathbf{0}$. We have no control over $\left\|\boldsymbol{\beta}_{0}\right\|_{2}^{2}$, since it is determined entirely by our observations \boldsymbol{y}. Therefore, our problem has been reduced to finding $\boldsymbol{\alpha}$ that minimizes the second term $\|\boldsymbol{\beta}-\boldsymbol{\Sigma} \boldsymbol{\alpha}\|_{2}^{2}$ above, which is non-negative. We can make it zero (i.e. as small as possible) by taking

$$
\hat{\boldsymbol{\alpha}}=\boldsymbol{\Sigma}^{-1} \boldsymbol{\beta} .
$$

Finally, the \boldsymbol{x} which minimizes the residual (solves (1)) is

$$
\begin{equation*}
\hat{\boldsymbol{x}}=\boldsymbol{V} \hat{\boldsymbol{\alpha}}=\boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{\beta}=\boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{U}^{\mathrm{T}} \boldsymbol{y} \tag{5}
\end{equation*}
$$

Thus we can calculate the solution to (1) simply by applying the linear operator $\boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{U}^{\mathrm{T}}$ to the input data \boldsymbol{y}. There are two interesting facts about the solution $\hat{\boldsymbol{x}}$ in (5):

1. When $\boldsymbol{y} \in \operatorname{span}\left(\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{M}\right\}\right)$, we have $\boldsymbol{\beta}_{0}=\boldsymbol{U}_{0}^{\mathrm{T}} \boldsymbol{y}=\mathbf{0}$, and so the residual $\boldsymbol{r}=\mathbf{0}$. In this case, there is at least one exact solution, and the one we choose satisfies $\boldsymbol{A} \hat{\boldsymbol{x}}=\boldsymbol{y}$.
2. Note that if $R<N$, then the solution is not unique. In this case, \boldsymbol{V}_{0} has at least one column, and any part of a vector \boldsymbol{x} in the range of \boldsymbol{V}_{0} is not seen by \boldsymbol{A}, since

$$
\boldsymbol{A} \boldsymbol{V}_{0} \boldsymbol{\alpha}_{0}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathrm{T}} \boldsymbol{V}_{0} \boldsymbol{\alpha}_{0}=\mathbf{0} \quad\left(\text { since } \boldsymbol{V}^{\mathrm{T}} \boldsymbol{V}_{0}=\mathbf{0}\right) .
$$

As such,

$$
\boldsymbol{x}^{\prime}=\hat{\boldsymbol{x}}+\boldsymbol{V}_{0} \boldsymbol{\alpha}_{0}
$$

for any $\boldsymbol{\alpha}_{0} \in \mathbb{R}^{N-R}$ will have exactly the same residual, since $\boldsymbol{A} \boldsymbol{x}^{\prime}=\boldsymbol{A} \hat{\boldsymbol{x}}$. In this case, our solution $\hat{\boldsymbol{x}}$ is the solution with smallest norm, since

$$
\begin{aligned}
\left\|\boldsymbol{x}^{\prime}\right\|_{2}^{2} & =\left\langle\hat{\boldsymbol{x}}+\boldsymbol{V}_{0} \boldsymbol{\alpha}_{0}, \hat{\boldsymbol{x}}+\boldsymbol{V}_{0} \boldsymbol{\alpha}_{0}\right\rangle \\
& =\langle\hat{\boldsymbol{x}}, \hat{\boldsymbol{x}}\rangle+2\left\langle\hat{\boldsymbol{x}}, \boldsymbol{V}_{0} \boldsymbol{\alpha}_{0}\right\rangle+\left\langle\boldsymbol{V}_{0} \boldsymbol{\alpha}, \boldsymbol{V}_{0} \boldsymbol{\alpha}\right\rangle \\
& =\|\hat{\boldsymbol{x}}\|_{2}^{2}+2\left\langle\boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{U}^{\mathrm{T}} \boldsymbol{y}, \boldsymbol{V}_{0} \boldsymbol{\alpha}_{0}\right\rangle+\left\|\boldsymbol{\alpha}_{0}\right\|_{2}^{2} \quad\left(\text { since } \boldsymbol{V}_{0}^{\mathrm{T}} \boldsymbol{V}_{0}=\mathbf{I}\right) \\
& =\|\boldsymbol{x}\|_{2}^{2}+\left\|\boldsymbol{\alpha}_{0}\right\|_{2}^{2} \quad\left(\text { since } \boldsymbol{V}^{\mathrm{T}} \boldsymbol{V}_{0}=\mathbf{0}\right)
\end{aligned}
$$

which is minimized by taking $\boldsymbol{\alpha}_{0}=\mathbf{0}$.
To summarize, $\hat{\boldsymbol{x}}=\boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{U}^{\mathrm{T}} \boldsymbol{y}$ has the desired properties stated at the beginning of this module, since

1. when $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$ has a unique exact solution, it must be $\hat{\boldsymbol{x}}$,
2. when an exact solution is not available, $\boldsymbol{\boldsymbol { x }}$ is the solution to (1),
3. when there are an infinite number of minimizers to (1), $\hat{\boldsymbol{x}}$ is the one with smallest norm.

Because the matrix $\boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{U}^{\mathrm{T}}$ gives us such an elegant solution to this problem, we give it a special name: the pseudo-inverse.

The Pseudo-Inverse

The pseudo-inverse of a matrix \boldsymbol{A} with singular value decomposition (SVD) $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathrm{T}}$ is

$$
\begin{equation*}
\boldsymbol{A}^{\dagger}=\boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{U}^{\mathrm{T}} \tag{6}
\end{equation*}
$$

Other names for \boldsymbol{A}^{\dagger} include natural inverse, Lanczos inverse, and Moore-Penrose inverse.

Given an observation \boldsymbol{y}, taking $\hat{\boldsymbol{x}}=\boldsymbol{A}^{\dagger} \boldsymbol{y}$ gives us the least squares solution to $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$. The pseudo-inverse \boldsymbol{A}^{\dagger} always exists, since every matrix (with rank R) has an SVD decomposition $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathrm{T}}$ with $\boldsymbol{\Sigma}$ as an $R \times R$ diagonal matrix with $\Sigma[r, r]>0$.

When \boldsymbol{A} is full $\operatorname{rank}(R=\min (M, N))$, then we can calculate the pseudo-inverse without using the SVD. There are three cases:

- When \boldsymbol{A} is square and invertible $(R=M=N)$, then

$$
\boldsymbol{A}^{\dagger}=\boldsymbol{A}^{-1}
$$

This is easy to check, as here

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathrm{T}} \quad \text { where both } \boldsymbol{U}, \boldsymbol{V} \text { are } N \times N,
$$

and since in this case $\boldsymbol{V} \boldsymbol{V}^{\mathrm{T}}=\boldsymbol{V}^{\mathrm{T}} \boldsymbol{V}=\mathbf{I}$ and $\boldsymbol{U} \boldsymbol{U}^{\mathrm{T}}=\boldsymbol{U}^{\mathrm{T}} \boldsymbol{U}=$ I,

$$
\begin{aligned}
\boldsymbol{A}^{\dagger} \boldsymbol{A} & =\boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{U}^{\mathrm{T}} \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathrm{T}} \\
& =\boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathrm{T}} \\
& =\boldsymbol{V} \boldsymbol{V}^{\mathrm{T}} \\
& =\mathbf{I} .
\end{aligned}
$$

Similarly, $\boldsymbol{A} \boldsymbol{A}^{\dagger}=\mathbf{I}$, and so \boldsymbol{A}^{\dagger} is both a left and right inverse of \boldsymbol{A}, and thus $\boldsymbol{A}^{\dagger}=\boldsymbol{A}^{-1}$.

- When \boldsymbol{A} more rows than columns and has full column rank $(R=N \leq M)$, then $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}$ is invertible, and

$$
\begin{equation*}
\boldsymbol{A}^{\dagger}=\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\mathrm{T}} \tag{7}
\end{equation*}
$$

This type of \boldsymbol{A} is "tall and skinny"

$$
\left[\begin{array}{c}
\boldsymbol{A} \\
\end{array}\right]
$$

and its columns are linearly independent. To verify equation (7), recall that

$$
\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}=\boldsymbol{V} \boldsymbol{\Sigma} \boldsymbol{U}^{\mathrm{T}} \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathrm{T}}=\boldsymbol{V} \boldsymbol{\Sigma}^{2} \boldsymbol{V}^{\mathrm{T}}
$$

and so

$$
\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\mathrm{T}}=\boldsymbol{V} \boldsymbol{\Sigma}^{-2} \boldsymbol{V}^{\mathrm{T}} \boldsymbol{V} \boldsymbol{\Sigma} \boldsymbol{U}^{\mathrm{T}}=\boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{U}^{\mathrm{T}}
$$

which is exactly the content of (6).

- When \boldsymbol{A} has more columns than rows and has full row rank $(R=M \leq N)$, then $\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}$ is invertible, and

$$
\begin{equation*}
\boldsymbol{A}^{\dagger}=\boldsymbol{A}^{\mathrm{T}}\left(\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}\right)^{-1} \tag{8}
\end{equation*}
$$

This occurs when \boldsymbol{A} is "short and fat"

$$
\left[\begin{array}{ll}
\boldsymbol{A}
\end{array}\right]
$$

and its rows are linearly independent. To verify equation (8), recall that

$$
\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathrm{T}} \boldsymbol{V} \boldsymbol{\Sigma} \boldsymbol{U}^{\mathrm{T}}=\boldsymbol{U} \boldsymbol{\Sigma}^{2} \boldsymbol{U}^{\mathrm{T}}
$$

and so

$$
\boldsymbol{A}^{\mathrm{T}}\left(\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}\right)^{-1}=\boldsymbol{V} \boldsymbol{\Sigma} \boldsymbol{U}^{\mathrm{T}} \boldsymbol{U} \boldsymbol{\Sigma}^{-2} \boldsymbol{U}^{\mathrm{T}}=\boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{U}^{\mathrm{T}}
$$

which again is exactly (6).

\boldsymbol{A}^{\dagger} is as close to an inverse of \boldsymbol{A} as possible

As discussed in above, when \boldsymbol{A} is square and invertible, \boldsymbol{A}^{\dagger} is exactly the inverse of \boldsymbol{A}. When \boldsymbol{A} is not square, we can ask if there is a better right or left inverse. We will argue that there is not.

Left inverse Given $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$, we would like $\boldsymbol{A}^{\dagger} \boldsymbol{y}=\boldsymbol{A}^{\dagger} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{x}$ for any \boldsymbol{x}. That is, we would like \boldsymbol{A}^{\dagger} to be a left inverse of $\boldsymbol{A}: \boldsymbol{A}^{\dagger} \boldsymbol{A}=\mathbf{I}$. Of course, this is not always possible, especially when \boldsymbol{A} has more columns than rows, $M<N$. But we can ask if any other matrix \boldsymbol{H} comes closer to being a left inverse
than \boldsymbol{A}^{\dagger}. To find the "best" left-inverse, we look for the matrix which minimizes

$$
\begin{equation*}
\min _{\boldsymbol{H} \in \mathbb{R}^{N \times M}}\|\boldsymbol{H} \boldsymbol{A}-\mathbf{I}\|_{F}^{2} \tag{9}
\end{equation*}
$$

Here, $\|\cdot\|_{F}$ is the Frobenius norm, defined for an $N \times M$ matrix \boldsymbol{Q} as the sum of the squares of the entries: ${ }^{3}$

$$
\|\boldsymbol{Q}\|_{F}^{2}=\sum_{n=1}^{M} \sum_{n=1}^{N}|Q[m, n]|^{2}
$$

With (9), we are finding \boldsymbol{H} such that $\boldsymbol{H} \boldsymbol{A}$ is as close to the identity as possible in the least-squares sense.

The pseudo-inverse \boldsymbol{A}^{\dagger} minimizes (9). To see this, recognize (see the exercise below) that the solution \boldsymbol{H} to (9) must obey

$$
\begin{equation*}
\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}} \hat{\boldsymbol{H}}^{\mathrm{T}}=\boldsymbol{A} . \tag{10}
\end{equation*}
$$

We can see that this is indeed true for $\hat{\boldsymbol{H}}=\boldsymbol{A}^{\dagger}$:

$$
\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}^{\mathrm{T}^{\mathrm{T}}}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathrm{T}} \boldsymbol{V} \boldsymbol{\Sigma} \boldsymbol{U}^{\mathrm{T}} \boldsymbol{U} \boldsymbol{\Sigma}^{-1} \boldsymbol{V}^{\mathrm{T}}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathrm{T}}=\boldsymbol{A} .
$$

So there is no $N \times M$ matrix that is closer to being a left inverse than \boldsymbol{A}^{\dagger}.

[^2]Right inverse If we re-apply \boldsymbol{A} to our solution $\hat{\boldsymbol{x}}=\boldsymbol{A}^{\dagger} \boldsymbol{y}$, we would like it to be as close as possible to our observations \boldsymbol{y}. That is, we would like $\boldsymbol{A} \boldsymbol{A}^{\dagger}$ to be as close to the identity as possible. Again, achieving this goal exactly is not always possible, especially if \boldsymbol{A} has more rows that columns. But we can attempt to find the "best" right inverse, in the least-squares sense, by solving

$$
\begin{equation*}
\underset{\boldsymbol{H} \in \mathbb{R}^{N \times M}}{\operatorname{minimize}}\|\boldsymbol{A} \boldsymbol{H}-\mathbf{I}\|_{F}^{2} . \tag{11}
\end{equation*}
$$

The solution $\hat{\boldsymbol{H}}$ to (11) (see the exercise below) must obey

$$
\begin{equation*}
\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} \hat{\boldsymbol{H}}=\boldsymbol{A}^{\mathrm{T}} . \tag{12}
\end{equation*}
$$

Again, we show that \boldsymbol{A}^{\dagger} satisfies (12), and hence is a minimizer to (11):

$$
\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{A}^{\dagger}=\boldsymbol{V} \boldsymbol{\Sigma}^{2} \boldsymbol{V}^{\mathrm{T}} \boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{U}^{\mathrm{T}}=\boldsymbol{V} \boldsymbol{\Sigma} \boldsymbol{U}^{\mathrm{T}}=\boldsymbol{A}^{\mathrm{T}}
$$

Moral:
$\boldsymbol{A}^{\dagger}=\boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{U}^{\mathrm{T}}$ is as close (in the least-squares sense) to an inverse of \boldsymbol{A} as you could possibly have.

Exercise:

Show that the minimizer $\hat{\boldsymbol{H}}$ to (9) must obey (10). Do this by using the fact that the derivative of the functional $\|\boldsymbol{H} \boldsymbol{A}-\mathbf{I}\|_{F}^{2}$ with respect to an entry $H[k, \ell]$ in \boldsymbol{H} must obey

$$
\frac{\partial\|\boldsymbol{H} \boldsymbol{A}-\mathbf{I}\|_{F}^{2}}{\partial H[k, \ell]}=0, \quad \text { for all } 1 \leq k \leq N, 1 \leq \ell \leq M
$$

to be a solution to (9). Do the same for (11) and (12).

Technical Details: Existence of the SVD

In this section we will prove that any $M \times N$ matrix \boldsymbol{A} with $\operatorname{rank}(\boldsymbol{A})=$ R can be written as

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathrm{T}}
$$

where $\boldsymbol{U}, \boldsymbol{\Sigma}, \boldsymbol{V}$ have the five properties listed at the beginning of the last section.

Since $\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}$ is symmetric positive semi-definite, we can write:

$$
\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}=\sum_{n=1}^{N} \lambda_{n} \boldsymbol{v}_{n} \boldsymbol{v}_{n}^{\mathrm{T}}
$$

where the \boldsymbol{v}_{n} are orthonormal and the λ_{n} are real and non-negative. Since $\operatorname{rank}(\boldsymbol{A})=R$, we also have $\operatorname{rank}\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}\right)=R$, and so $\lambda_{1}, \ldots, \lambda_{R}$ are all strictly positive above, and $\lambda_{R+1}=\cdots=\lambda_{N}=0$.

Set

$$
\boldsymbol{u}_{m}=\frac{1}{\sqrt{\lambda_{m}}} \boldsymbol{A} \boldsymbol{v}_{m}, \quad \text { for } m=1, \ldots, R, \quad \boldsymbol{U}=\left[\begin{array}{lll}
\boldsymbol{u}_{1} & \cdots & \boldsymbol{u}_{R}
\end{array}\right] .
$$

Notice that these \boldsymbol{u}_{m} are orthonormal, as

$$
\left\langle\boldsymbol{u}_{m}, \boldsymbol{u}_{\ell}\right\rangle=\frac{1}{\sqrt{\lambda_{m} \lambda_{\ell}}} \boldsymbol{v}_{\ell}^{\mathrm{T}} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{v}_{m}=\sqrt{\frac{\lambda_{m}}{\lambda_{\ell}}} \boldsymbol{v}_{\ell}^{\mathrm{T}} \boldsymbol{v}_{m}= \begin{cases}1, & m=\ell, \\ 0, & m \neq \ell .\end{cases}
$$

These \boldsymbol{u}_{m} also happen to be eigenvectors of $\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}$, as

$$
\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{u}_{m}=\frac{1}{\sqrt{\lambda_{m}}} \boldsymbol{A} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{v}_{m}=\sqrt{\lambda_{m}} \boldsymbol{A} \boldsymbol{v}_{m}=\lambda_{m} \boldsymbol{u}_{m}
$$

Now let $\boldsymbol{u}_{R+1}, \ldots, \boldsymbol{u}_{M}$ be an orthobasis for the null space of $\boldsymbol{U}^{\mathrm{T}}-$ concatenating these two sets into $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{M}$ forms an orthobasis for all of \mathbb{R}^{M}.

Let $\boldsymbol{V}=\left[\begin{array}{llll}\boldsymbol{v}_{1} & \boldsymbol{v}_{2} & \cdots & \boldsymbol{v}_{R}\end{array}\right]$. In addition, let

$$
\boldsymbol{V}_{0}=\left[\begin{array}{llll}
\boldsymbol{v}_{R+1} & \boldsymbol{v}_{R+2} & \cdots & \boldsymbol{v}_{N}
\end{array}\right], \quad \boldsymbol{V}_{\text {full }}=\left[\begin{array}{ll}
\boldsymbol{V} & \boldsymbol{V}_{0}
\end{array}\right]
$$

and

$$
\boldsymbol{U}_{0}=\left[\begin{array}{llll}
\boldsymbol{u}_{R+1} & \boldsymbol{u}_{R+2} & \cdots & \boldsymbol{u}_{M}
\end{array}\right], \quad \boldsymbol{U}_{\text {full }}=\left[\begin{array}{ll}
\boldsymbol{U} & \boldsymbol{U}_{0}
\end{array}\right] .
$$

It should be clear that $\boldsymbol{V}_{\text {full }}$ is an $N \times N$ orthonormal matrix and $\boldsymbol{U}_{\text {full }}$ is a $M \times M$ orthonormal matrix. Consider the $M \times N$ matrix $\boldsymbol{U}_{\text {full }}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{V}_{\text {full }}$ - the entry in the $m^{\text {th }}$ rows and $n^{\text {th }}$ column of this matrix is

$$
\begin{aligned}
\left(\boldsymbol{U}_{\text {full }}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{V}_{\text {full }}\right)[m, n]=\boldsymbol{u}_{m}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{v}_{n} & =\left\{\begin{array}{ll}
\sqrt{\lambda_{n}} \boldsymbol{u}_{m}^{\mathrm{T}} \boldsymbol{u}_{n} & n=1, \ldots, R \\
0, & n=R+1, \ldots, N . \\
& = \begin{cases}\sqrt{\lambda_{n}}, & m=n=1, \ldots, R \\
0, & \text { otherwise. }\end{cases}
\end{array} . . \begin{array}{l}
\end{array} .\right.
\end{aligned}
$$

Thus

$$
\boldsymbol{U}_{\text {full }}^{\mathrm{T}} \boldsymbol{A} \boldsymbol{V}_{\text {full }}=\boldsymbol{\Sigma}_{\text {full }}
$$

where

$$
\Sigma_{\text {full }}[m, n]= \begin{cases}\sqrt{\lambda_{n}}, & m=n=1, \ldots, R \\ 0, & \text { otherwise }\end{cases}
$$

Since $\boldsymbol{U}_{\text {full }} \boldsymbol{U}_{\text {full }}^{\mathrm{T}}=\mathbf{I}$ and $\boldsymbol{V}_{\text {full }} \boldsymbol{V}_{\text {full }}^{\mathrm{T}}=\mathbf{I}$, we have

$$
\boldsymbol{A}=\boldsymbol{U}_{\text {full }} \boldsymbol{\Sigma}_{\text {full }} \boldsymbol{V}_{\text {full }}^{\mathrm{T}} .
$$

Since $\boldsymbol{\Sigma}_{\text {full }}$ is non-zero only in the first R locations along its main diagonal, the above reduces to

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathrm{T}}, \quad \boldsymbol{\Sigma}=\left[\begin{array}{llll}
\sqrt{\lambda_{1}} & & & \\
& \sqrt{\lambda_{2}} & & \\
& & \ddots & \\
& & & \sqrt{\lambda_{R}}
\end{array}\right] .
$$

[^0]: ${ }^{1}$ Recall that the rank of a matrix is the number of linearly independent columns of a matrix (which is always equal to the number of linearly independent rows).

[^1]: ${ }^{2}$ Subspaces \mathcal{S}_{1} and \mathcal{S}_{2} are complementary in \mathbb{R}^{N} if $\mathcal{S}_{1} \perp \mathcal{S}_{2}$ (everything in \mathcal{S}_{1} is orthogonal to everything in \mathcal{S}_{2}) and $\mathcal{S}_{1} \oplus \mathcal{S}_{2}=\mathbb{R}^{N}$. You can think of $\mathcal{S}_{1}, \mathcal{S}_{2}$ as a partition of \mathbb{R}^{N} into two orthogonal subspaces.

[^2]: ${ }^{3}$ It is also true that $\|\boldsymbol{Q}\|_{F}^{2}$ is the sum of the squares of the singular values of $\boldsymbol{Q}:\|\boldsymbol{Q}\|_{F}^{2}=\lambda_{1}^{2}+\cdots+\lambda_{p}^{2}$. This is something that you will prove on the next homework.

