
Solving systems of symmetric equations

We have now seen a few examples of how to set up systems of linear
equations for signal processing problems of interest. Next we will
discuss how to solve, and analyze the solution to, systems which are
square and symmetric.

For the remainder of this set of notes, we will consider A which are
N × N (square) and symmetric (or Hermitian for complex-valued
A).

Definition: If A is real-valued, then we call it symmetric if
AT = A. Example:

A =

1 3 7
3 −5 −2
7 −2 6


In other words, AT = A means that A[m,n] = A[n,m] for all
m,n = 1, . . . , N .

Definition: If A is complex-valued, then we call it Hermitian
if AH = A. Recall that AH is the conjugate-transpose of A: we
exchange rows and columns and then conjugate all the entries. Ex-
ample:

A =

 1 3 + j2 1− j3
3− j2 −5 2 + j4
1 + j3 2− j4 6


In other words, A = AH means than A[m,n] = A[n,m]. Of course,
if A is real-valued, then AH = AT.
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In the end, we will be interested in the general case of non-symmetric
and even non-square matrices, but symmetric/Hermitian matrices
will be the starting point of our study — they actually play a fun-
damental role in solving general “least-squares” problems and our
analysis of them here will prove very useful later on.

The main mathematical construct we will use to understand the so-
lution to symmetric systems of equations is the eigenvalue de-
composition.

Eigenvalue decompositions of symmetric matrices

Definition: An eigenvector of an N × N matrix is a vector v
such that

Av = λv

for some λ ∈ C. The scalar λ is called the eigenvalue associated
with v.

A matrix A is called diagonalizable if it has N linearly indepen-
dent eigenvectors v1, . . . ,vN . In this case, we can write the eigen-
value relations

Av1 = λ1v1

Av2 = λ2v2

...

AvN = λNvN
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as

A

v1 v2 · · · vN


︸ ︷︷ ︸

V

=

v1 v2 · · · vN


︸ ︷︷ ︸

V


λ1

λ2
. . .

λN


︸ ︷︷ ︸

Λ

or more compactly
AV = V Λ,

and since the vn are linearly independent, V −1 exists, and we can
write

A = V ΛV −1.

Not all matrices are diagonalizable, but it happens that all symmetric
matrices are. This fact is a consequence of the Schur Triangularity
Lemma, which states that any N ×N matrix is “unitarily similar”
to an upper-triangular matrix. That is, for a given A, there is an
orthonormal matrix1 V such that

A = V∆V H,

where

∆ =


∆[1, 1] ∆[1, 2] · · · ∆[1, N ]

0 ∆[2, 2] · · · ∆[2, N ]
... . . . ...
0 0 · · · ∆[N,N ]

 .
(For the interested reader, we will prove the Schur Triangularity
Lemma in the “Technical Details” section at the end of these notes.)

1We call a N × N matrix V orthonormal if its columns are orthogonal to
one another and have unit norm, so V HV = I. This means, of course,
that V −1 = V H.
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If A is Hermitian, then A = AH implies

V∆V H =
(
V∆V H

)H
= V∆HV H

and so ∆ = ∆H. Since ∆ is upper-triangular, this means it must
also be diagonal and real:

∆ =


λ1 0 · · · 0
0 λ2 · · · 0
... . . . ...
0 · · · · · · λN

 , λn ∈ R.

Thus every Hermitian matrix is diagonalized by an orthonormal ma-
trix; it is unitarily similar to a real-valued diagonal matrix. It is also
not hard to see that if vn is a column of V , then

Avn = V∆V Hvn = V∆en = λnV en = λnvn,

where en is the nth standard basis vector (en[k] = 1 for k = n and
is zero elsewhere). This means we can interpret A = V∆V H as
an eigen-decomposition of A. Hermitian N × N matrices have N
orthogonal eigenvectors and real eigenvalues.

We will sometimes find it convenient to write the eigenvalue decom-
position as a weighted sum of outer products between each eigenvec-
tor with itself:

A = V ΛV H =
N∑
n=1

λnvnv
H
n .
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An N ×N symmetric/Hermitian matrix A has:

• Real eigenvalues (even if A is itself complex valued),
λ1, . . . , λN .

• N orthogonormal eigenvectors, v1, . . . ,vN .

• If A is real-valued, then the vn can also be chosen to be
real-valued.

We can decompose real-valued A as

A = V ΛV T =
N∑
n=1

λnvnv
T
n ,

where V contains the eigenvectors as columns, so V TV =
V V T = I, and Λ contains the eigenvalues along its diagonal.
If A is complex-valued and Hermitian, simply replace V T and vT

with V H and vH above.

For the remainder of these notes, we will concentrate below on the
real-valued/symmetric case. But there is a straightforward extension
of everything we say to the complex-valued/Hermitian case.

One way to think aboutV is as a transform which greatly simplifies
the action of A:

Ax = V ΛV Tx

= (inverse V transform)(pointwise multiply)(V transform) [x] .
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Definition: A symmetric matrix A is called positive definite if
it has positive eigenvalues,

λn > 0 for n = 1, . . . , N.

We will sometimes abbreviate this as sym+def. We will also call
A positive semi-definite if λn ≥ 0.

sym+def A are invertible, and obey

xTAx > 0 for all x ∈ RN ,x 6= 0.

We will use the typical convention for sym+def matrices of order-
ing the eigenvalues largest to smallest, so

λ1 ≥ λ2 ≥ · · · ≥ λN > 0
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Example

A =

3
2

1
2

1
2

3
2


One can easily check (do this at home) that A = V ΛV T, where

V =
[
v1 v2

]
=

1√
2

[
1 −1
1 1

]
and Λ =

[
λ1 0
0 λ2

]
=

[
2 0
0 1

]

Now consider the action of A on x =

[
0
1

]
.

Note thatα = V Tx =

[
〈x,v1〉
〈x,v2〉

]
= 1√

2

[
1
1

]
. Since V is orthonormal,

this tells us that we can write

x = V α =
1√
2
v1 +

1√
2
v2.

If we now consider the impact of Λ, we see that the eigenvalue de-
composition show us that applyingA stretches the v1 component by
2 and the v2 component by 1 to get

Ax = λ1〈x,v1〉v1 + λ2〈x,v2〉v2

=
√

2v1 +
1√
2
v2

=

[
1
1

]
+

[
−1/2
1/2

]
=

[
1/2
3/2

]
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Sylvester’s Matrix Theorem

As we have seen above, another way to write A = V ΛV T is as a
weighted sum of outer products of each column of V with itself:

A =
N∑
n=1

λnvnv
T
n .

This form, along with the orthogonality of the vn, makes it easy to
see what happens to the eigenvalues when we square the matrix

A2 =

(
N∑
n=1

λnvnv
T
n

)(
N∑
`=1

λ`v`v
T
`

)

=
N∑
n=1

N∑
`=1

λnλ`vn(v
T
nv`)v

T
`

=
N∑
n=1

λ2
nvnv

T
n (Since vT

nv` = 0 unless n = `.)

= V Λ2V T.

Note that this is also easy to see using the (essentially identical)
argument in matrix form

A2 = AA = V ΛV TV ΛV T = V Λ2V T.

It does not take too much imagination to see that this extends to
any positive integer-valued power p,

Ap =
N∑
n=1

λpnvnv
T
n ,

and thus to any polynomial function of A:

cpA
p+cp−1A

p−1+· · ·+c1A+c0I =
N∑
n=1

(cpλ
p
n+cp−1λ

p−1
n +· · ·+c1λn+c0)vnvT

n .
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From polynomials, we can move to any analytic function using a
Taylor expansion,

f (A) =
N∑
n=1

f (λn) · vnvT
n .

This is known as Sylvester’s matrix theorem.

Here are several important examples of Sylvester’s matrix theorem
in action

1. Inverting a matrix. Take f (x) = x−1,

A−1 =
N∑
n=1

1

λn
· vnvT

n = V Λ−1V T.

Of course, for this expression to make sense, all of the eigen-
values λn must be non-zero.

2. Taking the square root of a positive matrix. If A is non-
negative in that all of the eigenvalues λn are greater than or
equal to zero, then we can write

A1/2 =
N∑
n=1

√
λn · vnvT

n = V Λ1/2V T.

3. Matrix exponential,

eA =
N∑
n=1

eλn · vnvT
n .

(As an aside, the matrix exponential is of paramount impor-
tance when studying dynamical systems — if we have a sys-
tem of linear homogenous first-order differential equations with
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constant coefficients

x′(t) = Ax(t)

x(0) = x0,

the solution is given by x(t) = eAtx0.)

Variational form for extreme eigenvalues

For sym+def A, there is a variational expression for the largest and
smallest eigenvalues:

max
x∈RN

xTAx

‖x‖22
= max

x∈RN

‖x‖2=1

xTAx = λ1, (the maximizer is v1)

min
x∈RN

xTAx

‖x‖22
= min

x∈RN

‖x‖2=1

xTAx = λN , (the minimizer is vN)

These identities can be verified using the fact that for any v ∈ RN ,

‖V Tx‖22 = xTV V Tx = xTx = ‖x‖22,
and so for example

max
x∈RN

‖x‖2=1

xTAx = max
x∈RN

‖x‖2=1

xTV ΛV Tx = max
α∈RN

‖α‖2=1

αTΛα = max
α∈RN

‖α‖2=1

N∑
n=1

|α[n]|2 λn,

where in the second equality above we have made the substitution
α = V Tx. A moment’s thought tells us that the sum above is
largest, under the constraint that

∑N
n=1 |α[n]|2 = 1, for

α[n] =

{
1 n = 1

0 otherwise
.

(Recall that λ1 ≥ λ2 ≥ · · · ≥ λN > 0.)
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Solving systems of sym+def equations

Given y, we are interested in finding x such that

y = Ax.

When A is sym+def, it is invertible, so this system has a unique
solution:

x = A−1y

which we can also write as

x = V Λ−1V Ty

= (inverse V transform)(pointwise multiply)(V transform) [y] .

We can also write

x = A−1y =
N∑
n=1

1

λn
〈y,vn〉vn.

Notice that once we have the eigenvalue decomposition in hand, solv-
ing y = Ax simply amounts to a matrix-vector multiply.

Now suppose that there is some observation error:

y = Ax + e,

where e is an unknown error vector in RN . We reconstruct as before,
by applying A−1 to y:

x̃ = A−1y = A−1(Ax + e)

= x +A−1e.
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The reconstruction error is

x̃− x = A−1e.

Questions:

1. What is the largest eigenvalue of A−1?

2. What is an upper bound on the reconstruction error energy?

‖x̃− x‖22 = ‖A−1e‖22
= eT(A−1)TA−1e

≤

3. What is the smallest eigenvalue of A−1?

4. What is a lower bound on the construction error?
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In the end, we have

1

λ2
1

‖e‖22 ≤ ‖x̃− x‖22 ≤
1

λ2
N

‖e‖22.

Average reconstruction error

The maximum and minimum eigenvalues give us the “best case” and
“worst case” errors,

x̃− x = V Λ−1V Te,

and so
1

λ2
1

‖e‖22 ≤ ‖x̃− x‖22

where the lower bound is achieved for e ∈ span(v1). Similarly,

‖x̃− x‖22 ≤
1

λ2
N

‖e‖22

where the upper bound is achieved for e ∈ span(vN).

We can also get an “average case” reconstruction error when e is
generic (i.e. random). Our model for random noise is that the
entries of e are iid Gaussian:

e[n] ∼ Normal(0, σ2), n = 1, 2, . . . , N

E[e[n]e[`]] =

{
σ2 n = `

0 n 6= `
.
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What is the mean-energy of e? Answer:

E[‖e‖22] = E

[
N∑
n=1

|e[n]|2
]

=
N∑
n=1

E
[
|e[n]|2

]
=

N∑
n=1

σ2

= Nσ2

Since e is random, x̃ − x is a random vector. The expected recon-
struction energy is

E
[
‖x̃− x‖22

]
= E

[
‖A−1e‖22

]
.

We can get a nice expression for this by using the eigenvalue descrip-
tion. Just plug and chug2:

2There is a fact that we are using here time and time again: if u and v are
vectors and Z is a matrix, then 〈v,Zu〉 = 〈ZTv,u〉.
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E
[
‖A−1e‖22

]
= E

[
‖V Λ−1V Te‖22

]
= E

[
〈V Λ−1V Te,V Λ−1V Te〉

]
= E

[
〈Λ−1V Te,V TV Λ−1V Te〉

]
= E

[
〈Λ−1V Te,Λ−1V Te〉

]
(since V TV = I)

= E

[
N∑
n=1

∣∣∣∣ 1

λn
〈e,vn〉

∣∣∣∣2
]

=
N∑
n=1

1

λ2
n

E
[
|〈e,vn〉|2

]
.

Note that

|〈e,vn〉|2 =

(
N∑
m=1

vn[m]e[m]

)2

=
N∑
m=1

N∑
`=1

vn[m]vn[`]e[m]e[`],

so

E
[
|〈e,vn〉|2

]
=

N∑
m=1

N∑
`=1

vn[m]vn[`] E [e[m]e[`]]︸ ︷︷ ︸
=0 unless m=`

=
N∑
m=1

|vn[m]|2σ2

= σ2, since ‖vn‖22 = 1.
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Thus

E
[
‖A−1e‖22

]
= σ2

N∑
n=1

1

λ2
n

= Nσ2︸︷︷︸
E ‖e‖22

(
1

N

N∑
n=1

1

λ2
n

)
︸ ︷︷ ︸
average of λ−2

n

.

The intuition here is that a random vector is spread out more or
less equally over the basis {vn} rather than being concentrated in
span(v1) or span(vn).
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Summary of sym+def reconstruction

Observe
y = Ax + e,

where A is sym+def.

Reconstruct
x̃ = A−1y = x +A−1e.

Best/Worst case reconstruction errors

1

λ2
1

‖e‖22 ≤ ‖x̃− x‖22 ≤
1

λ2
N

‖e‖22

The max (min) is obtained for e pointing in the same direction as
vN (v1).

Average reconstruction error

e[n] ∼ Normal(0, σ2), e[n] iid

E
[
‖x̃− x‖22

]
= σ2

N∑
n=1

1

λ2
n

.
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Technical details: Schur decomposition

In this section we prove one of the fundamental results in linear
algebra: that any N × N matrix is unitarily similar to an upper-
triangular matrix. That is, given an N × N matrix A, there is an
orthonormal matrix V (meaning V HV = I) such that

A = V∆V H,

where

∆ =


∆[1, 1] ∆[1, 2] · · · ∆[1, N ]

0 ∆[2, 2] · · · ∆[2, N ]
... . . . ...
0 0 · · · ∆[N,N ]

 .
This is known as the Schur Decomposition or the Schur Tri-
angulation. It is also possible to choose V so that ∆ is lower-
triangular.

The proof works by induction. First, we use the fact that every
matrix has at least one eigenvector. Let v1 be an eigenvector of
A; we may assume that v1 is normalized, since all scalar multiples
of eigenvectors are also eigenvectors. Then we take V 1 to be any
orthogonal matrix with v1 as one of its columns:

V 1 =
[
v1 U 1

]
, U 1 ∈ RN×N−1, UH

1U 1 = I, UH
1 v1 = 0.

This is equivalent to finding an orthobasis for RN where v1 is one
of the basis vectors and the N − 1 columns of U 1 are the others.
There are many such choices for U 1; one can be found using the
Gram-Schmidt algorithm.

Since v1 is an eigenvector of A (call the corresponding eigenvalue
λ1),

AV 1 =
[
λ1v1 AU 1

]
,
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and

V H
1AV 1 =


λ1

0
... V H

1AU 1
...
0

 .
Now suppose we have an N ×N matrix of the form

Ap =

[
∆p W p

0 M p

]
, (1)

where ∆p is a p × p upper-triangular matrix, W p is an arbitrary
p×(N−p) matrix, andM p is an arbitrary (N−p)×(N−p) square
matrix. Now let vp+1 be an eigenvector of M p with corresponding
eigenvalue λp+1, and let U p+1 be an (N − p)× (N − p− 1) matrix
such that

Zp+1 =
[
vp+1 U p+1

]
is a (N − p)× (N − p) orthonormal matrix. Set

V p+1 =

[
Ip 0
0 Zp+1

]
,

where Ip is the p × p identity matrix. It should be clear that V p+1

is an orthonormal matrix. Applying V p+1 to the right of Ap yields

ApV p+1 =

[
∆p W pZp+1

0 [λp+1vp+1 M pU p+1]

]
,

and so

V H
p+1ApV p+1 =



∆p W pZp+1

0


λp+1

0
... ZH

p+1M pU p+1
...
0



 =

[
∆p+1 W p+1

0 M p+1

]
,
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where ∆p+1 is a (p+1)× (p+1) upper-triangular matrix, and W p+1

and M p+1 are arbitrary (p + 1)× (N − p− 1) and (N − p− 1)×
(N − p− 1) matrices, respectively.

Given an arbitrary A,

Ap = V H
p−1 · · ·V

H
2V

H
1AV 1V 2 · · ·V p−1

will have the form (1). Applying the construction over N iterations
gives

∆ = V H
N · · ·V

H
2V

H
1AV 1V 2 · · ·V N ,

which will be upper-triangular. Since each of the V p are orthonor-
mal, V := V 1V 2 · · ·V N will also be orthonormal. Thus

∆ = V HAV ⇔ A = V∆V H,

where ∆ is upper-triangular and V HV = I.

Eigenvalues of A

The diagonal entries of the matrix ∆ will contain the λp used in the
construction above (which we might recall are the eigenvalues of the
submatrices M p):

∆[p, p] = λp.

We can see now that the λp are also eigenvalues of A. Since ∆ is
triangular, its diagonal entries λ1, . . . , λN are its eigenvalues. If xp
is the eigenvector of ∆ corresponding to λp, then taking yp = V xp
we have

Ayp = V∆V HV xp = V∆xp = λpV xp = λpyp,

and so the λ1, . . . , λN are eigenvalues of A as well.
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Real-valued decompositions

If A is real-valued but non-symmetric, then both V and ∆ can be
complex-valued. However, there does real-valuedU and Υ such that

A = UΥUT,

whereU is orthonormal,UTU = I, and Υ is almost upper-triangular:

Υ =


Λ1 ∗ · · · ∗
0 Λ2 · · · ∗
... . . . ...
0 · · · · · · ΛK

 .
The Λp above are either 2 × 2 matrices or scalars; there is a 2 × 2
block for every pair of complex-conjugate eigenvalues of A, and a
scalar for every real eigenvalue. Although this decomposition is not
strictly upper-triangular, it carries many of the same advantages.
For example, with U pre-computed and given a b ∈ RN , we can still
compute the solution to Ax = b with O(N 2) operations.
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