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In this portion of the course, we will focus on problems of the form:

y = Ax

(vector in RM) = (M ×N matrix)(vector in RN).

We are given A, we observe y and want to find (or estimate) x.

This is call a linear inverse problem, and is one of the most
important and fundamental concepts in all of engineering, science,
and applied mathematics.

You can think of the entries of y as containing different indirect
observations or measurements of the unknown vector x:

y =


〈x,a1〉
〈x,a2〉

...
〈x,aM〉

 ,
where aT

m (or aH
m if the entries are complex) is the mth row of A.

Each entry of y is a different linear functional of x, an inner
product of a known vector am against the unknown vector x.

We will be interested in cases whereM > N (more observations than
unknowns), M = N (exactly as many observations as unknowns),
and M < N (fewer observations than unknowns). If an exact solu-
tion does not exist (which in general it does not), we want a principled
way to do the best we can. We also want everything we do to be
stable in the presence of noise in the observations.

The first thing we will do is see some examples of how systems of
equations of this type arise in typical signal processing problems.
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Discretizing inverse problems

In many real-world applications, the signal or image we are measur-
ing is a function of a continuous variable (or variables for images).
Of course, if we are going to reconstruct the signal/image on a com-
puter, our answer will ultimately be discrete. In this section, we
discuss a general way to discretize linear inverse problems using a
basis representation.

We will start with three concrete examples: reconstruction from non-
uniform samples, deconvolution of a continuous-time signal, and the
2D tomography problem (“reconstruction from projections”). From
these three examples, it should be clear how the essential framework
can be generalized.

Example: Reconstruction from non-uniform samples

We have seen methods for recovering continuous-time signals from
samples that are uniformly spaced in time; these have all reduced
(in one way or another) to some kind of interpolation between the
samples. When the samples are non-uniform, the problem requires a
different approach.

We observe M samples of a continuous-time signal f (t) at non-
uniform locations t1, . . . , tM ,

y[m] = f (tm), m = 1, . . . ,M.
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We will not be able to do much without some kind of assumption on
the signal f (t) — if we only assume that it is finite energy, then there
are of course an infinite number of ways we could “connect the dots”
between the samples. Our operating assumption will be that f (t)
lies in (or at least close to) an N -dimensional subspace spanned by
a basis ψ1, . . . ,ψN . For example, if f (t) is non-zero on an interval
[0, T ], and we take

ψn(t) =


1, n = 1,

cos(2π(n− 1)t/T ), n = 2, . . . , (N + 1)/2,

sin(2π(n− (N + 1)/2)t/T ), n = (N + 3)/2, . . . , N

for odd N , the basis functions {ψn} correspond to a partial Fourier
series expansion, and our linear model is something akin to f (t) being
bandlimited. This is one example of a basis which might be used; the
proper choice involved carefully assessing prior information we have
about the signal being samples, and translating that information into
a basis model.

To set this up the signal recovery as a linear inverse problem, we
expand f (t) using an N -dimensional basis ψ1, . . . ,ψN :

f (t) =
N∑
n=1

x[n]ψn(t),
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where the x[n] are the expansion coefficients for f (t) — again, know-
ing the x[n] is the same as knowing f (t). The samples y[m] can then
be written as a linear combination of samples (at the same locations)
of each of the basis functions:

y[m] = f (tm) =
N∑
n=1

x[n]ψn(tm).

We can rewrite the expression above as the matrix-vector product:
y[1]
y[2]

...
y[M ]

 =


ψ1(t1) ψ2(t1) · · · ψN(t1)
ψ1(t2) ψ2(t2) · · · ψN(t2)

... ...
ψ1(tM) ψ2(tM) · · · ψN(tM)



x[1]
x[2]

...
x[N ]


By stacking up the observed samples values into y ∈ RM and the
unknown basis expansion coefficients into x ∈ RN , we can rewrite
the expression above as

y = Ax,

where the M ×N matrix A has entries

A[m,n] = ψn(tm).

To recover the input f (t), we solve the system of equations above to
get x̂, and then synthesize

f̂ (t) =
N∑
n=1

x̂[n]ψn(t).

The coefficients are captured in a finite-dimensional vector, but they
specify a function of a continuous variable.
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In this example and in those that follow, the reconstruction of course
depends on the basis that was chosen. If the {ψn}n are chosen
improperly, so that the true underlying signal is not close to their
span, the reconstruction will in general not be accurate.

Example: Deconvolution

LTI
h(t)

y(t)f(t)

Problem: given the output y(t) of a linear time-invariant (LTI) sys-
tem with known impulse response h(t), determine the input f (t).

Applications in which this problems arises are manifold:

• image deblurring

• seismology

• channel equalization in digital communications

• · · ·

We observe (samples of) a continuous-time function y(t) which is the
result of a linear operator applied to another continuous-time signal
f (t):

y(t) =

∫ ∞
−∞

h(t− τ )f (τ ) dτ.

We can turn this into a discrete matrix problem using a basis expan-
sions for f (t).
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Suppose, for example, that f (t) is time-limited, in that we know
f (t) is zero outside of [0, T ]. Let {ψn} be a basis for L2([0, T ]). (We
have seen many different examples of bases for signals time-limited
to an interval.) Then any f (t) can be written as

f (t) =
∑
n

x[n]ψn(t),

and recovering the expansion coefficients x[n] is the same as recov-
ering f (t). We can re-write the integral equation above as

y(t) =

∫ ∞
−∞

h(t− τ )
∑
n

x[n]ψn(τ ) dτ

=
∑
n

x[n]

(∫ ∞
−∞

h(t− τ )ψn(τ ) dτ

)
.

In practice, we will in general not observe the continuous-time signal
y(t), but rather observe a finite set of samples of y(t). Suppose we
observe M samples at times t = t1, t2, . . . , tM ; for what we are doing
here it does not matter whether the samples are equally spaced or
not. Now we can write our M observations of f (t) as

y[m] := y(tm) =
∑
n

x[n]

(∫ ∞
−∞

h(tm − τ )ψn(τ ) dτ

)
=
∑
n

A[m,n]x[n]

where

A[m,n] =

∫ ∞
−∞

h(tm − τ )ψn(τ ) dτ = 〈hm,ψn〉,

where hm is the function

hm(t) = h(tm − t).
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Also in practice, we will only be able to recover a finite number of the
expansion coefficients x[n]. Say we settle for recovering x[n], n =
1, . . . N . Then the M samples of y(t) can be written as different
linear combinations of the N expansion coefficients:

y[m] =
N∑
n=1

A[m,n]x[n], m = 1, . . . ,M.

If we collect all of the A[m,n] into a M × N matrix A, all of the
observations y[m] into the vector y ∈ RM , and all of the unknown
expansion coefficients x[n] into the vector x ∈ RN , we can write the
deconvolution problem as

y = Ax.

Again, the solution x̂ we get by solving the system of equations above
is a vector in RN , but it specifies as continuous-time signal which we
synthesize using

f̂ (t) =
N∑
n=1

x̂[n]ψn(t).

Example: Tomographic reconstruction

There are many situations where we would like to look inside of
an object without have to cut it open. This is particularly true in
medical imaging applications, where we would like to get a picture
of a person’s internal tissue structure in a non-invasive manner.

One method to learn about the interior of an object while only taking
measurements on the exterior is tomography. When you get a
CAT scan on your head, X-rays of a known intensity are emitted
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on one side of your head, and the intensity is measured as it exits
the other side of your head. This is done at many different angles
and orientations. The idea is that each of these measurements tells
us about the net absorption of all the tissues along a narrow path.
Below, we will see that a collection of such measurements can be
untangled to form a coherent picture of the internal tissue structure.

The Radon transform

In the 2D tomographic reconstruction problem, the image f (s, t) we
wish to acquire is sampled using line integrals. We can parameterize
a line ~̀ using an offset r and an angle θ as shown below:

✓

r

~̀

The line ~̀ is the set of points obeying a linear constraint:

~̀= {(s, t) : − s sin θ + t cos θ = r}
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The integral of f (s, t) along ~̀ is given by

Rr,θ[f ] =

{∫
f
(
s, r+s sin θ

cos θ

)
ds |θ| ≤ π/4∫

f
(
t cos θ−r

sin θ
, t
)

dt π/4 < |θ| ≤ π/2
.

Of course, these expressions are equal to one another except when
θ = 0, π/2. Note also that the measurements are unique only over
a range of π, as Rr,θ+π[f ] = R−r,θ[f ]. It is sometimes convenient
to write the line integral as a 2D integral of f (s, t) against a delta
ridge:

Rr,θ[f ] =

∫ ∫
f (s, t)δ(−s sin θ + t cos θ − r) ds dt, (1)

where δ(·) is the Dirac delta function.

The collection of all such line integrals {Rr,θ[f ], θ ∈ [0, π], r ∈ R}
is called the Radon transform of f (s, t). The radon transform is
itself a continuous function of two variables. The figure below show
an illustrative example: on the left, we see Rr,θ of a test image as a
function of r for two different fixed values of θ. On the right is the
collection Rr,θ as a function of both r and θ.
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Left: Rr,π/4[f ] and Rr,π[f ] as a function of r, where f(s, t) is the Shepp-

Logan phantom. Right: The Radon transform of the phantom. The rows are

indexed by r and the columns by θ (in degrees).

Reconstruction from a discrete set of line integrals

Given measurements y[m], m = 1, . . . ,M corresponding to line in-
tegrals at different different offsets rm and angles θm (i.e. a finite
set of samples of the Radon transform), which have possibly been
corrupted by noise, we would like to estimate the underlying image
f (s, t). If the measurements are dense in (r, θ) space, the natural
approach to this problem is to use filtered backprojection. Our focus
here will be setting this problem up as finite linear inverse problem

y = Ax + noise, y ∈ RM ,x ∈ RN

so that it can be attacked with the general set of tools for solving
such problems (e.g. least-squares).

We start by choosing a finite-dimensional space V in which to perform
the reconstruction that comes equipped with a set of N basis vectors
{ψγ(s, t)}. We will use the general index γ ∈ Γ where Γ is a set
of size N as, depending on the basis, it may be convenient to index
the basis in different ways (i.e. by integers, pairs of integers over the
same range, pairs of integers over different ranges, etc.).

For example, if f (s, t) is non-zero only for (s, t) ∈ [0, 1]2, we might
take our reconstruction space V to be the set of all “pixellated” im-
ages — images that are piecewise-constant on squares of side length
1/n for some integer n. A natural basis for this space is the set of
indicator functions on these squares:

ψj,k(s, t) =

{
1 s ∈ [j/n, (j + 1)/n], t ∈ [k/n, (k + 1)/n]

0 otherwise
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Using our general index notation, we can write any f (s, t) ∈ V as

f (s, t) =
∑
γ∈Γ

x[γ]ψγ(s, t),

where Γ = {(j, k) : j, k = 0, 1, . . . , n − 1} with size N = n2,
and the x[γ] ∈ R are the basis expansion coefficients, which are, in
this case, the pixel values. (Another natural basis for V would be
the two-dimensional Haar basis we encountered earlier). The point
is that knowing the discrete set of coefficients x[γ] for all γ ∈ Γ is
the same as knowing the continuous-space function f (s, t).

We can also write the measurements of an f (s, t) ∈ V in terms of
the basis functions:

y[m] = Rrm,θm

∑
γ∈Γ

x[γ]ψγ(s, t)


=
∑
γ∈Γ

x[γ]Rrm,θm [ψγ(s, t)] (since Rr,θ[·] is linear)

=
∑
γ∈Γ

A[m, γ]x[γ] where A[m, γ] = Rrm,θm [ψγ(s, t)] ,

which can be written in more compact form as

y = Ax. (2)

The entries of the M×N matrixA contain the results of each of the
M measurements functionals Rrm,θm[·] applied to each of the N basis
functions ψγ(s, t), the N -vector x contains the expansion coefficients
for f (s, t) in the basis {ψγ}, and y contains the M measurements.
This is illustrated in the figure below. As we can see, not too many
of the ~̀m pass through a given pixel, meaning that the matrix A will
be very sparsely populated.
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Left: A sketch of one of the basis functions ψγ(s, t) from the discussion above.

Right: The entries of A in the column indexed by γ will be the result of

measuring the basis function ψγ(s, t): A[m, γ] = Rrm,θm[ψγ].

Of course, the true underlying image will in general not lie in the
chosen finite-dimensional subspace V . This means that even when
there is no measurement noise, there will still be some inherent er-
ror in our calculations. But solving (2) will in some sense find the
member of V that best explains the measurements that have been
observed. If the true image can be closely approximated by a mem-
ber of V , then we will not lose much through this discretization. A
major consideration in choosing the space V is how well we can use
it to approximate images we expect to encounter.

General linear operators

The discretization technique above can be very naturally generalized
to different kinds of measurement operators that map signals of a
continuous variable(s) into RM . All we need is that the function-
als that map the continuous-time signal f (t) to the measurements
{y[m]} are linear.

Let’s make this a little more precise mathematically. The word “func-
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tional” means a mapping from a function to a number — in this case,
it is from the underlying signal f (t) to a measurement y[m] — we
will use1 Lm(·) : L2(R)→ R to denote these functionals. A linear
functional simply means that

Lm(αf + βg) = αLm(f ) + βLm(g), for all f , g ∈ L2(R).

Examples of linear functionals include things we have seen above.
For instance, sampling at a known location tm,

Lm(f ) = f (tm)

and integrating against a known function φm(t)

Lm(f ) =

∫ ∞
−∞

f (t)φm(t) dt,

are both linear functionals. Note that the convolution example above
falls into the latter category with φm(t) = h(t− tm).

If we have a finite basis decomposition, then discretization works
exactly as it did in the special cases above:

y[m] = Lm(f ) = Lm

(
N∑
n=1

x[n]ψn

)
=

N∑
n=1

Lm(ψn)x[n],

and so we have the matrix equation
y[1]
y[2]

...
y[M ]

 =


L1(ψ1) L1(ψ2) · · · L1(ψN)
L2(ψ1) L2(ψ2) · · · L2(ψN)

... ...
LM(ψ1) LM(ψ2) · · · LM(ψN)



x[1]
x[2]

...
x[N ]


or y = Ax. Notice that since the entries of A do not depend on f ,
they can be pre-computed.
1The input space doesn’t necessarily need to be L2(R); it can be any linear
space of continuous-time signals.
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