Splines

Recall (from way back on page 22 of these notes) the definition of
a polynomial spline. Specifically, for any L > 1, given a se-
quence of locations ¢, ..., tx and function values at those locations
Vg - -+ Ui, an L™ order polynomial spline is a function z(¢) which
obeys the following three properties:

Lo a(ty) =v, fork=1,..., K.
2. z(t) is an L™ order polynomial between the .

3. x(t) has L — 1 continuous derivatives (including at the t;).

A natural basis for working with polynomial splines can be con-
structed using the “B-spline functions,” defined as:

L, —1/2<t<1/2
bo(t) =< T ’
olt) {O, otherwise,

bi(t) = (bo * b)(1),
bo(t) = (by * by) (1),

br(t) = (bp_1 * by)(1).
By computing the convolutions above, we can easily compute the
first three:
t+1, —-1<t<0
1, —1/2<t<1/2 ’ - =7
bo(t):{’ /2 < /2 bi(t)=<1—t, 0<t<1,

0, else.
O 0, else.
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((t+3/2)2/2, —3/2<t<—1/2,

bt) = 1 —t*4+3/4, —1/2<t<1/2,
(t—3/2)2/2, 1/2<t<3/2
0, it > 3/2.

Here are pictures of the first four:

bolt) bi(t) bo(t) bs(t)

Some key properties of these functions include:
1. bz(t) is supported (non-zero) on [—(L +1)/2, (L +1)/2]

2. The by (t) have L 4 2 knots at locations
= —(L+1)/2+k k=0,...,L+1.

For L odd, these knots are at integer values,
for L even, the knots are halfway in between the integers

3. Between the 7y, the by () are polynomials of order L

4. At the knots 7y, the by(t) are continuous (for L > 1) and have
L — 1 continuous derivatives (for L > 2).
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For fixed L. it should be clear from properties 2-4 above that the
superposition

o

x(t) = Z a,br(t —n),

is a polynomial spline:

e z(t) is an L™ order polynomial in between equally spaced
knots.

e When L is odd, these knots are at the integers (at {...,—1,0,1,2, ..

and when L is even, these knots are shifted over by 1/2 (at
{...,=3/2,—1/2,1/2,3/2,...}).
e At these knots, x(t) is continuous and has L — 1 continuous

derivatives. In between the knots x(¢) has an infinite number
of derivatives (since it is polynomial there).

We will show below that

1. The space Span({by(t —n)},ez) is the collection of all polyno-
mial splines (with knots at Z or Z + 1/2) of order L, i.e., any
polynomial spline (with appropriate knots) can be written as a
superposition of B-splines.

2. The B-splines {b;(t — n)},ez, although they are not an or-
thobasis for L > 1, are a Riesz basis for this space.

In the process, we will show how to compute the basis constants A, B
and how to construct the dual basis, allowing us to more easily work
with splines in practice.
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The set of shifted B-splines is a Riesz basis

First, we will show that {b;(t—n) },.cz are a Riesz basis for Span({b(t—
n)}nez). We start by computing the continuous-time Fourier trans-
form of an arbitrary linear combination of basis functions:

F ( f: oznbL(t—n)> = f: o, B (7€)e 7"

n=—oo n=—oo

= B1(jQ) Z e

n—=——oo

= B(j2) A(e”®),

where A(e?) is the discrete-time Fourier transform of {a,}. Using
the classical Parseval’s theorem, we have

o0

Z a,br(t —n)

n=—oo

1 [ | |
= [ BRI a9

Since A(e’) is 2m-periodic, we can rewrite this integral as

T | |
g/ > IBL((Q+ 2mk)) [ [A(?)]? dSL.
e
Let

A= min Y |B(j(Q+2rk))],
k=—00

—7<Q<nr

B = max Z |Br(7(Q + 2mk))|*.
k=—o00

—m<Q<m
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Then

.¢]

1 [T ,
S aubi(t —n)| > A-—/ A2 dO
S , 21 J &
>> adult—n)| < B-o— | A} 2,
™ J—nx
n=-—00 9

and thus by the (classical) Parseval’s theorem for the DTFT:

A Ja <

n=—oo

50 2

Z a,br(t —n)

n=—oo

92 n=-—00

We need some assurance that A > 0 and B < oo. We know exactly
what the Fourier transform of the B-splines are, so we can compute
these quantities explicitly. We have

1/2 sin(€2/2)

Bo(j Q) = /_ L =T,

and so

For fixed € in [—m, 7], we can compute

00 2L+2

Z |Br(j(Q0 + 21k))|* = f:

k=—00 k=—00

sin(€y/2 + k)
Qo/Q + 7wk

When €2y = 0, this expression is equal to 1. Even for small values of
L, the terms in the sum above decay quickly in |k| — a pretty good
approximation can be calculated for any 2y running the sum from
k= —10,...,10.
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Here is what this function looks like for L =0, ..., 3:

L=0 L =1 L =2 L=3
Qy — Oy — Qy — Qy —

In these examples, we see that the function in the expression above is
upper bounded by 1 and can be lower bounded by something greater
than zero (but that this something seems to decrease as L increases).

In fact, by analyzing the sum above, you can show that

()7 < 3 B vomm)P < 1

T k=—00

over all Qy € [0, 7]. Thus we can take A = (2/7)*!"* and B =1 as
the Riesz basis constants.
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Dual B-splines

The dual basis of a B-spline basis also consists of shifts of a template
function. Recall from the previous set of notes that we can write the
n'™ dual basis function as

where H,, , is the “infinite matrix” which specifies the inverse to the
linear operator

(% (x))[n] = f: Gooxll], with Gy = (b(t — €),bs(t — n)).

f=—00

But notice now that the discrete-time linear system ¥ is time-invariant,
as

Go = (bp(t —£),b(t —n)) = (bp(t),br(t —n+ L)) = gr[n — ¥,

where
gr[n] = {br(t), br(t — n)).

Thus ¢ is a convolution operator:

We can invert this convolution operator (with another time-invariant
system) if the DTFT of gr[n],

oo

Gr(e) = Z gr[nle ",

n=—oo
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is non-zero for all w € [—7, 7).

We already know that this is true, since

Grle™) = Y (br(t),br(t — n))e "

= % (/ B.(jQ)B.(jQ)e’™ dQ) —Jwn
1 @i
% ‘BL JQ n_z_:ooe

:/ B, ()P (Z 5(0 w—27rl~c)> a0

k=—00

= Z / |BL(jQ)[?6(Q — w — 27mk) dQ
k=—00

= Z 1By, (j(w + 27k) |
k=—00

This is exactly the quantity we studied in the previous section to get
the basis constants, so we know G (e’*) is real and

2 2L+2 .
(—) < Gule®) < 1,

T
and so it is invertible. Set

. 1 1
HL(GW)ZWa hiln] = o |

Then the n'™ dual basis function is

bLn Zth— bLt—€>ZEL(t—TL>,

f=—00

H (e)e!" dw
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where

br(t) = fj hi|—0)br(t — ) = i holl)br(t — 0),

{=—00 {=—00

where the last equality follows from the fact that hln| is even (its
DTFT is real).

Here are picture of the first three dual functions:

~

bo(t) bi(t) by(t)

Note that since {by(t — n)} are orthogonal, they are self-dual.

Sampling B-splines

There are sampling and reconstruction architectures for polynomial
splines that are very similar to those for bandlimited signals. Suppose
that we are given a signal x(t) and form

o

2(t) =Y (x(t), bt — n))b.(t —n).

n—=——oo

We can compute the coefficients afn] = (z(t),b.(t — n)) with a
filter-then-sample architecture:
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o(t) — | bp(—t) ~ C—D —aln]

T=1

The analog filter on the left above has an impulse response that is

the time-reversal of the dual B-spline bz (). You can think of this as
the equivalent of the anti-aliasing filter.

To reconstruct the polynomial spline, we have the familiar architec-
ture

So just as it is possible to reconstruct bandlimited signals from uni-
form samples, splines with equally spaced knots can also be recon-
structed from uniform samples (after pre-filtering).
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Interpolating with splines

As noted previously, given a sequence of numbers «[n], the continuous-
time signal

o0

x(t) = Z an]br(t —n), (1)

n=—oo

will be an L'™-order polynomial spline with knots at the integers Z (if
Lisodd) or Z+1/2 (if L is even). But the question remains: is every
such polynomial spline in Span{bz(t—n)},cz? A polynomial spline is
completely determined by the values at its knots, and of course every
different set of values will give you a different polynomial spline. So
we can answer this question in the affirmative if given a sequence of

numbers z4n|, we can produce x(t) as in (1) that matches x4[n] on
Z (or Z+1/2).

Let’s assume that L is odd, just so we can avoid shifts by 1/2 every-
where — what we say below is easily adapted to L even. We would
like to find a[n| such that z(n) = x4[n| for all n € Z. Since the by (t—
n) is non-zero only for L values of n (n = —(L—1)/2,...,(L—1)/2),

we have
(L—1)/2

z(n) = Z alllbr(n —0).

(=—(L-1)/2

That is, the samples of x(t) at the integers can be computed with
the discrete time convolution of a[n| and samples of the B-spline
functions

Or[n] = br(n).

Thus we can imagine z(n) being created by taking the aln| and
passing it through an LTT filter:
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an] —  Opn] | — z4[n]

Given the sequence x4[n|, we would like to find an a[n] that induces
it using the system above. That is, we want the inverse of the filter
above. Again, we turn to the frequency domain. Since 07[n] consists
of samples of by (t), we know that

O, () = fj By (j(w + 27k)).

k=—o00

This is similar to but not the same as the quantity G'1(e’*) we looked
at when computing the Riesz basis constants and dual functions —
we are not squaring the shifts of B;. Nevertheless, since we know
Br(j12), we calculate this spectrum for the first few values of L:

O (e) ~ Oy(e) ~ Oy(e) o Oy(e)

Notice that the spectrum is flat for L = 1 — this is because super-
imposing the b;(t) also does linear interpolation. For the other values
of L, the inverse is very well conditioned. We set

O ] 1 n ]‘ = W jwn
6e) = g Bolil =5 [ Bulee aw

21 )
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and then given a prescribed x4[n|, we can compute the corresponding
a[n]| with

aln] = Y Orln — layl] = (x4 % 0;)[n].
{=—00
Since we can find such a sequence a[n] for any set of samples at the
knots, every polynomial spline is in the (closure of) the span of the

br(t —n).

The following system takes x4n], and interpolates between the inte-
gers:

] C p— (OO b0 - (1)
i d(t —n)

n=—oo

We can combine this into a single block as follows. The impulse
response of this system (what comes out when x4[n| = dn]) is

b (t) = f: 0,.[0)b,(t —0).

f=—00

Thus the output is
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So another architecture is

taln}———{ X —— B - x(t)
o |
> (t—n)

n=—oo

The % (t) are called the interpolating splines, or the cardinal spline
functions. Here is a sketch of the cardinal spline for L = 3:

vl

(From Unser, Splines, A perfect fit ...)

See pages 22-23 of the notes for a simple example of this in action.
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