
Splines

Recall (from way back on page 22 of these notes) the definition of
a polynomial spline. Specifically, for any L ≥ 1, given a se-
quence of locations t1, . . . , tK and function values at those locations
vt1, . . . , vtK , an Lth order polynomial spline is a function x(t) which
obeys the following three properties:

1. x(tk) = vtk for k = 1, . . . , K.

2. x(t) is an Lth order polynomial between the tk.

3. x(t) has L− 1 continuous derivatives (including at the tk).

A natural basis for working with polynomial splines can be con-
structed using the “B-spline functions,” defined as:

b0(t) =

{
1, −1/2 ≤ t ≤ 1/2,

0, otherwise,

b1(t) = (b0 ∗ b0)(t),

b2(t) = (b1 ∗ b0)(t),

...

bL(t) = (bL−1 ∗ b0)(t).

By computing the convolutions above, we can easily compute the
first three:

b0(t) =

{
1, −1/2 ≤ t < 1/2,

0, else.
b1(t) =





t + 1, −1 ≤ t ≤ 0,

1− t, 0 ≤ t ≤ 1,

0, else.
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b2(t) =





(t + 3/2)2/2, −3/2 ≤ t ≤ −1/2,

−t2 + 3/4, −1/2 ≤ t ≤ 1/2,

(t− 3/2)2/2, 1/2 ≤ t ≤ 3/2,

0, |t| ≥ 3/2.

Here are pictures of the first four:

b0(t) b1(t) b2(t) b3(t)
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Some key properties of these functions include:

1. bL(t) is supported (non-zero) on [−(L + 1)/2, (L + 1)/2]

2. The bL(t) have L + 2 knots at locations

τk = −(L + 1)/2 + k, k = 0, . . . , L + 1.

For L odd, these knots are at integer values,
for L even, the knots are halfway in between the integers

3. Between the τk, the bL(t) are polynomials of order L

4. At the knots τk, the bL(t) are continuous (for L ≥ 1) and have
L− 1 continuous derivatives (for L ≥ 2).
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For fixed L, it should be clear from properties 2–4 above that the
superposition

x(t) =
∞∑

n=−∞
αnbL(t− n),

is a polynomial spline:

• x(t) is an Lth order polynomial in between equally spaced
knots.

• WhenL is odd, these knots are at the integers (at {. . . ,−1, 0, 1, 2, . . .}),
and when L is even, these knots are shifted over by 1/2 (at
{. . . ,−3/2,−1/2, 1/2, 3/2, . . .}).
• At these knots, x(t) is continuous and has L − 1 continuous

derivatives. In between the knots x(t) has an infinite number
of derivatives (since it is polynomial there).

We will show below that

1. The space Span({bL(t−n)}n∈Z) is the collection of all polyno-
mial splines (with knots at Z or Z + 1/2) of order L, i.e., any
polynomial spline (with appropriate knots) can be written as a
superposition of B-splines.

2. The B-splines {bL(t − n)}n∈Z, although they are not an or-
thobasis for L > 1, are a Riesz basis for this space.

In the process, we will show how to compute the basis constants A,B
and how to construct the dual basis, allowing us to more easily work
with splines in practice.
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The set of shifted B-splines is a Riesz basis

First, we will show that {bL(t−n)}n∈Z are a Riesz basis for Span({bL(t−
n)}n∈Z). We start by computing the continuous-time Fourier trans-
form of an arbitrary linear combination of basis functions:

F

( ∞∑

n=−∞
αnbL(t− n)

)
=

∞∑

n=−∞
αnBL(jΩ)e−jΩn

= BL(jΩ)
∞∑

n=−∞
αne

−jΩn

= BL(jΩ)A(ejΩ),

where A(ejΩ) is the discrete-time Fourier transform of {αn}. Using
the classical Parseval’s theorem, we have

∥∥∥∥∥
∞∑

n=−∞
αnbL(t− n)

∥∥∥∥∥

2

2

=
1

2π

∫ ∞

−∞
|BL(jΩ)|2 |A(ejΩ)|2 dΩ

Since A(ejΩ) is 2π-periodic, we can rewrite this integral as

1

2π

∫ π

−π

∞∑

k=−∞
|BL(j(Ω + 2πk))|2 |A(ejΩ)|2 dΩ.

Let

A = min
−π≤Ω≤π

∞∑

k=−∞
|BL(j(Ω + 2πk))|2,

B = max
−π≤Ω≤π

∞∑

k=−∞
|BL(j(Ω + 2πk))|2.
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Then
∥∥∥∥∥
∞∑

n=−∞
αnbL(t− n)

∥∥∥∥∥

2

2

≥ A · 1

2π

∫ π

−π
|A(ejΩ)|2 dΩ

∥∥∥∥∥
∞∑

n=−∞
αnbL(t− n)

∥∥∥∥∥

2

2

≤ B · 1

2π

∫ π

−π
|A(ejΩ)|2 dΩ,

and thus by the (classical) Parseval’s theorem for the DTFT:

A ·
∞∑

n=−∞
|αn|2 ≤

∥∥∥∥∥
∞∑

n=−∞
αnbL(t− n)

∥∥∥∥∥

2

2

≤ B ·
∞∑

n=−∞
|αn|2.

We need some assurance that A > 0 and B <∞. We know exactly
what the Fourier transform of the B-splines are, so we can compute
these quantities explicitly. We have

B0(jΩ) =

∫ 1/2

−1/2

e−jΩt dt =
sin(Ω/2)

Ω/2
,

and so

BL(jΩ) =

(
sin(Ω/2)

Ω/2

)L+1

.

For fixed Ω0 in [−π, π], we can compute

∞∑

k=−∞
|BL(j(Ω0 + 2πk))|2 =

∞∑

k=−∞

∣∣∣∣
sin(Ω0/2 + πk)

Ω0/2 + πk

∣∣∣∣
2L+2

When Ω0 = 0, this expression is equal to 1. Even for small values of
L, the terms in the sum above decay quickly in |k| — a pretty good
approximation can be calculated for any Ω0 running the sum from
k = −10, . . . , 10.
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Here is what this function looks like for L = 0, . . . , 3:

L = 0 L = 1 L = 2 L = 3
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1
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1

Ω0 → Ω0 → Ω0 → Ω0 →

In these examples, we see that the function in the expression above is
upper bounded by 1 and can be lower bounded by something greater
than zero (but that this something seems to decrease as L increases).

In fact, by analyzing the sum above, you can show that

(
2

π

)2L+2

≤
∞∑

k=−∞
|BL(j(Ω0 + 2πk))|2 ≤ 1

over all Ω0 ∈ [0, π]. Thus we can take A = (2/π)2L+2 and B = 1 as
the Riesz basis constants.
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Dual B-splines

The dual basis of a B-spline basis also consists of shifts of a template
function. Recall from the previous set of notes that we can write the
nth dual basis function as

b̃L,n(t) =
∞∑

`=−∞
Hn,`bL(t− `),

where Hn,` is the “infinite matrix” which specifies the inverse to the
linear operator

(G (x))[n] =
∞∑

`=−∞
Gn,`x[`], with Gn,` = 〈bL(t− `), bL(t− n)〉.

But notice now that the discrete-time linear system G is time-invariant,
as

Gn,` = 〈bL(t− `), bL(t− n)〉 = 〈bL(t), bL(t− n + `)〉 = gL[n− `],

where
gL[n] = 〈bL(t), bL(t− n)〉.

Thus G is a convolution operator:

(G (x))[n] =
∞∑

`=−∞
gL[n− `]x[`] = (x ∗ gL)[n].

We can invert this convolution operator (with another time-invariant
system) if the DTFT of gL[n],

GL(ejω) =
∞∑

n=−∞
gL[n]e−jωn,
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is non-zero for all ω ∈ [−π, π].

We already know that this is true, since

GL(ejω) =
∞∑

n=−∞
〈bL(t), bL(t− n)〉e−jωn

=
1

2π

∞∑

n=−∞

(∫ ∞

−∞
BL(jΩ)BL(jΩ)ejΩn dΩ

)
e−jωn

=
1

2π

∫ ∞

−∞
|BL(jΩ)|2

( ∞∑

n=−∞
ej(Ω−ω)n

)
dΩ

=

∫ ∞

−∞
|BL(jΩ)|2

( ∞∑

k=−∞
δ(Ω− ω − 2πk)

)
dΩ

=
∞∑

k=−∞

∫ ∞

−∞
|BL(jΩ)|2δ(Ω− ω − 2πk) dΩ

=
∞∑

k=−∞
|BL(j(ω + 2πk)|2.

This is exactly the quantity we studied in the previous section to get
the basis constants, so we know GL(ejω) is real and

(
2

π

)2L+2

≤ GL(ejω) ≤ 1,

and so it is invertible. Set

HL(ejω) =
1

GL(ejω)
, hL[n] =

1

2π

∫ π

−π
HL(ejω)ejωn dω

Then the nth dual basis function is

b̃L,n(t) =
∞∑

`=−∞
hL[n− `]bL(t− `) = b̃L(t− n),

173

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 0:30, October 21, 2019



where

b̃L(t) =
∞∑

`=−∞
hL[−`]bL(t− `) =

∞∑

`=−∞
hL[`]bL(t− `),

where the last equality follows from the fact that h[n] is even (its
DTFT is real).

Here are picture of the first three dual functions:

b̃0(t) b̃1(t) b̃2(t)

-3 -2 -1 0 1 2 3
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1
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1

1.5

2
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-1
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0

0.5

1

1.5

2

Note that since {b0(t− n)} are orthogonal, they are self-dual.

Sampling B-splines

There are sampling and reconstruction architectures for polynomial
splines that are very similar to those for bandlimited signals. Suppose
that we are given a signal x(t) and form

x̂(t) =
∞∑

n=−∞
〈x(t), b̃L(t− n)〉bL(t− n).

We can compute the coefficients α[n] = 〈x(t), b̃L(t − n)〉 with a
filter-then-sample architecture:
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ebL(�t) C ! D

T = 1

x(t) ↵[n]

The analog filter on the left above has an impulse response that is
the time-reversal of the dual B-spline b̃L(t). You can think of this as
the equivalent of the anti-aliasing filter.

To reconstruct the polynomial spline, we have the familiar architec-
ture

bL(t) x̂(t)x

1X

n=�1
�(t � n)

↵[n]

So just as it is possible to reconstruct bandlimited signals from uni-
form samples, splines with equally spaced knots can also be recon-
structed from uniform samples (after pre-filtering).
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Interpolating with splines

As noted previously, given a sequence of numbers α[n], the continuous-
time signal

x(t) =
∞∑

n=−∞
α[n] bL(t− n), (1)

will be an Lth-order polynomial spline with knots at the integers Z (if
L is odd) or Z+1/2 (if L is even). But the question remains: is every
such polynomial spline in Span{bL(t−n)}n∈Z? A polynomial spline is
completely determined by the values at its knots, and of course every
different set of values will give you a different polynomial spline. So
we can answer this question in the affirmative if given a sequence of
numbers xd[n], we can produce x(t) as in (1) that matches xd[n] on
Z (or Z + 1/2).

Let’s assume that L is odd, just so we can avoid shifts by 1/2 every-
where — what we say below is easily adapted to L even. We would
like to find α[n] such that x(n) = xd[n] for all n ∈ Z. Since the bL(t−
n) is non-zero only for L values of n (n = −(L−1)/2, . . . , (L−1)/2),
we have

x(n) =

(L−1)/2∑

`=−(L−1)/2

α[`]bL(n− `).

That is, the samples of x(t) at the integers can be computed with
the discrete time convolution of α[n] and samples of the B-spline
functions

θL[n] = bL(n).

Thus we can imagine x(n) being created by taking the α[n] and
passing it through an LTI filter:
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✓L[n]↵[n] xd[n]

Given the sequence xd[n], we would like to find an α[n] that induces
it using the system above. That is, we want the inverse of the filter
above. Again, we turn to the frequency domain. Since θL[n] consists
of samples of bL(t), we know that

ΘL(ejω) =
∞∑

k=−∞
BL(j(ω + 2πk)).

This is similar to but not the same as the quantity GL(ejω) we looked
at when computing the Riesz basis constants and dual functions —
we are not squaring the shifts of BL. Nevertheless, since we know
BL(jΩ), we calculate this spectrum for the first few values of L:

Θ1(e
jω) Θ2(e

jω) Θ3(e
jω) Θ4(e
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Notice that the spectrum is flat for L = 1 — this is because super-
imposing the b1(t) also does linear interpolation. For the other values
of L, the inverse is very well conditioned. We set

Θ̃(ejω) =
1

ΘL(ejω)
, θ̃L[n] =

1

2π

∫ π

−π
Θ̃L(ejω)ejωn dω,
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and then given a prescribed xd[n], we can compute the corresponding
α[n] with

α[n] =
∞∑

`=−∞
θ̃L[n− `]xd[`] = (xd ∗ θ̃L)[n].

Since we can find such a sequence α[n] for any set of samples at the
knots, every polynomial spline is in the (closure of) the span of the
bL(t− n).

The following system takes xd[n], and interpolates between the inte-
gers:

bL(t) x(t)x

1X

n=�1
�(t � n)

e✓L[n]xd[n]

We can combine this into a single block as follows. The impulse
response of this system (what comes out when xd[n] = δ[n]) is

biL(t) =
∞∑

`=−∞
θ̃L[`]bL(t− `).

Thus the output is

x(t) =
∞∑

n=−∞
xd[n]biL(t− n).
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So another architecture is

bi
L(t) x(t)x

1X

n=�1
�(t � n)

xd[n]

The biL(t) are called the interpolating splines, or the cardinal spline
functions. Here is a sketch of the cardinal spline for L = 3:

point ofview, however, it is much more efficient to work 
with the B-spline representation, at least when we are per- 
forming interpolation. The reason for this is that, in most 
applications, it is the re-sampling part (evaluation of the 
expansion formula (1) or (17)) that is by far the most 

A 3. Recursive causal and anti-causal filters for cubic spline inter- 
polation. 

A 4. Cardinal (or fundamental) cubic spline 

- 
0 0.5 1 1.5 2 

Frequency (Cycles) 

A 5. Frequency response of the spline interpolators of degree 
n=l a n d l  As n increases, the spline interpolators tend to the 
ideal law-pass filter (dotted line). 

costly step. Accordingly, we have the advantage of using 
the shortest possible basis functions (i.e., B-splines) such 
that the number of terms that contribute for a givenx is 
minimized. This is precisely why splines are so much 
more computationally efficient than the traditional 
sinc-based approach. Because sinc(x) decays like 1/ Ix 1 ,  
computing a signal value at a particular non-integer loca- 
tion with an error ofless than l% will require of the order 
of 100 operations in each direction, while B-splines pro- 
vide an exact computation with just a few non-zero terms 
(n+ 1 to be precise). (In q-dimensions, the complexity of 
an interpolation algorithm that uses separable basis h i c -  
tions increases with the power ofq. For this reason, virtu- 
ally no one uses sinc interpolation for images, not to 
mention volumes.) An illustration of how these ideas can 
apply for the geometric transformation of images is given 
in Box 3. When compared to any other type of 

26 IEEE SIGNAL PROCESSING MAGAZINE NOVEMBER 1999 

(From Unser, Splines, A perfect fit ...)

See pages 22-23 of the notes for a simple example of this in action.
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