
Haar wavelet filterbanks

Recall that we can compute the scaling coefficients sj,n and wavelet
coefficients wj,n at scale j from the scaling coefficients sj+1,n at scale
j + 1:

sj,n =
1√
2
sj+1,2n +

1√
2
sj+1,2n+1

wj,n =
1√
2
sj+1,2n −

1√
2
sj+1,2n+1.

If we think of the scaling/wavelet coefficients at scale j as a discrete
time sequence, so sj[n] := sj,n andwj[n] := wj,n, then the expressions
above suggest that the scaling coefficients at scale j can be broken
down scaling and wavelet coefficients at scale j−1 using filters and
downsampling arranged in the following architecture:

2

2

sj+1[n]

sj [n]

wj [n]

h0[n]

h1[n]

where the ↓ 2 block means “downsample by 2” and the impulse
responses for the filters are:

h0[n] =

{
1√
2

n = 0,−1

0 otherwise
h1[n] =


− 1√

2
n = −1

1√
2

n = 0

0 otherwise.
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Of course, we can continue on and break up the {sj,n} into scaling
and wavelet coefficients at the next coarsest scale. This gives rise to
a filter bank structure that we can associate with each of the ways
we can write the approximation at scale J , x̂J(t) = P VJ [x(t)].

x̂J(t) = P VJ−1[x(t)] + PWJ−1[x(t)]

=
∞∑

n=−∞
sJ−1,nφJ−1,n(t) +

∞∑
n=−∞

wJ−1,nψJ−1,n(t)

2

2

h0[n]

h1[n]

sJ [n]

sJ�1[n]

wJ�1[n]

Iterating this process on sJ−1[n] we obtain

x̂J(t) = P VJ−2[x(t)] + PWJ−2[x(t)] + PWJ−1[x(t)]

=
∞∑

n=−∞
sJ−2,nφJ−2,n(t) +

∞∑
n=−∞

wJ−2,nψJ−2,n(t) +
∞∑

n=−∞
wJ−1,nψJ−1,n(t)

2

2

h0[n]

h1[n]

sJ [n]

sJ�2[n]2

2

h0[n]

h1[n] wJ�2[n]

wJ�1[n]
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We can continue this process to obtain

x̂J(t) = P V0[x(t)] + PW0
[x(t)] + · · · + PWJ−1[x(t)]

=
∞∑

n=−∞
s0,nφ0,n(t) +

J−1∑
j=0

∞∑
n=−∞

wj,nψj,n(t)

2

2

h0[n]

h1[n]

sJ [n]

s0[n]

2

2

h0[n]

h1[n]

· · ·
2

2

h0[n]

h1[n]· · ·· · · w0[n]

wJ�1[n]

wJ�2[n]

This provides an extraordinarily efficient way to compute the full set
of scaling and wavelet coefficients given an initial approximation at
scale J .
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The discrete Haar transform

The connection to filter banks above gives us a natural way to define
a wavelet transform for discrete-time signals. Basically, we just treat
x[n] like it was a sequence of scaling coefficients at fine scale, then
apply as many levels of the filter bank as we like. So the following
structure:

2

2

h0[n]

h1[n]

sJ�1[n]

wJ�1[n]

x[n]

takes x[n] and transforms it into two sequences, sJ−1[n] and wJ−1[n],
each of which have half the rate of the input.

How do we invert this particular transform? With another filter
filter bank. Consider the following structure:

2

2

h0[n]

h1[n]

sJ�1[n]

wJ�1[n]

x[n]

2

2

x̃[n]

g0[n]

g1[n]

u[n]

v[n]
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If we take

g0[n] = h0[−n] =

{
1√
2

n = 0, 1

0 otherwise

g1[n] = h1[−n] =


1√
2

n = 0

− 1√
2

n = 1

0 otherwise

,

then we will have x̃[n] = x[n]. To see this, recall that

sJ−1[n] =
1√
2

(x[2n] + x[2n + 1]),

and so

u[n] =

{
1
2

(x[n] + x[n + 1]) n even
1
2

(x[n− 1] + x[n]) n odd
,

that is, the values in u[n] appear in pairs,

u[0] = u[1] =
1

2
(x[0] + x[1]), u[2] = u[3] =

1

2
(x[2] + x[3]), etc.

Similarly, since

wJ−1[n] =
1√
2

(x[2n]− x[2n + 1]) ,

we have

v[n] =

{
1
2

(x[n]− x[n + 1]) n even
1
2

(−x[n− 1] + x[n]) n odd
,

that is, the values in v[n] appear in pairs of ± terms,

v[0] = −v[1] =
1

2
(x[0]− x[1]), v[2] = −v[3] =

1

2
(x[2]− x[3]), etc.
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Now it is easy to see that

x̃[n] = u[n] + v[n] = x[n] for all n ∈ Z.

We can repeat this to as many levels as we desire. For example, the
following structure

2

2

h0[n]

h1[n] wJ�1[n]

x[n]

2

2

h0[n]

h1[n] wJ�2[n]

sJ�2[n]

takes x[n] and transforms it into three sequences, one of which is at
half the rate of x[n], and the other two are at a quarter of the rate.
To invert it, we simply apply the inverse filter bank twice:

wJ�1[n]

2

2

g0[n]

g1[n]

2

2

g0[n]

g1[n]

sJ�2[n]

wJ�2[n] x[n]

It should be clear how to extend this to an arbitrary number of levels.
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Filterbanks: Beyond Haar

The filterbank architecture that defines the discrete Haar transform
suggests a natural way in which to generalize our discussion of Haar
wavelets. Specifically, recall the architecture:

2

2

h0[n]

h1[n]

sJ�1[n]

wJ�1[n]

x[n]

2

2

x̃[n]

g0[n]

g1[n]

u[n]

v[n]

You might wonder if there are other choices for the filters h0[n],
h1[n], g0[n], and g1[n] that would correspond to alternative wavelet
decompositions. This is indeed the case, but of course this will only
be true when the filters satisfy certain restrictions.

To get some intuition for this, first we will consider a simpler question:
when can we show that the above architecture gives rise to a perfect
reconstruction filterbank, by which we simply mean a filterbank
satisfying x̃[n] = x[n]?

An answer to this question requires careful thought about what hap-
pens when we downsample and upsample a discrete-time se-
quence. You can read the technical details provided later in these
notes to see all the nitty-gritty details. It’s not to hard if you re-
member the z-transform, but is mostly just a lot of algebra that
doesn’t tend to give you a whole lot of insight, so we can just jump
to the first main conclusion.
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In order to obtain a filterbank that produces a (possibly delayed)
perfect reconstruction of the input x[n], the filters used must sat-
isfy two main properties, known as the perfect reconstruction
conditions:1

G0(e
jω)H0(e

−jω) + G1(e
jω)H1(e

−jω) = 0 (Alias cancellation)

and

G0(e
jω)H0(e

jω) + G1(e
jω)H1(e

jω) = 2e−jωm. (No distortion)

The “no distortion” condition is perhaps the more intuitive of the
two. Imagine that h0 was a perfect low-pass filter and h1 a perfect
high-pass filter. In this case, the downsampling step induces no alias-
ing. The no distortion condition simply implies that g0 and g1 have
to undo the effects of h0 and h1 so that we can get back our original
signal.

The “alias cancellation” condition simply accounts for the fact that in
real-world settings (e.g., finite-length filters), the downsampling step
may induce aliasing, and thus the filters must be well designed to
perfectly compensate for this effect (g0 needs to somehow filter out
the aliasing that results from the output of h0 not being perfectly
bandlimited, and similarly for g1).

Of course, the next natural question is: how can we construct filters
that satisfy this property? There is, of course, a huge variety of
choices, but it turns out that the conditions above impose a lot of
structure. For example, if we fix g0 and g1, then there are natural
choices for how to design h0 and h1 to ensure that we satisfy the
conditions above (again, see the technical details if you are curious).

1In the technical details these are stated in terms of the z-transform, but
here I will just use the DTFT to keep things simple.
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All of the discussion above tells us only what restrictions are imposed
by the desire to obtain a perfect reconstruction. Nothing we have
said so far tells us anything about whether the representation we are
computing corresponds to an orthonormal basis. If we additionally
wish to ask that the filterbank correspond to computing the coeffi-
cients for some kind of orthonormal basis, this imposes even more
structure. As shown in the technical details, if we want orthogo-
nality, this constrains our design even more. In fact, if we want an
orthogonal filterbank, then once we fix a single one of the filters (say,
g0), the rest are determined.

Moreover, not any filter g0 will do. As shown in the technical details,
g0 must satisfy a particular condition for everything to still work out.
Specifically, we need:

P (ejω) = G0(e
jω)G0(e

−jω) = |G0(e
jω)|2

to satisfy

P (ejω) + P (−ejω) = 2. (No distortion (v2))

Thus, constructing an orthonormal filterbank boils down to design-
ing a filter g0 satisfying this condition. There is still a bit of freedom
in how to best do this, and we will have more to say on this later,
but before we do so, we will take a step back to relate all of this
discussion back to the concepts we first introduced when discussing
wavelets. We will see that (ignoring some additional technical con-
straints on g0) any orthogonal filterbank has a natural correspon-
dence to a continuous-time orthonormal wavelet basis.
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Continuous-time orthonormal wavelet bases

We began our discussion of wavelets by considering the Haar wavelet
basis for decomposing continuous-time signals x(t) ∈ L2(R), giving
us a decomposition of the form

x(t) =
∞∑

n=−∞
s0,nφ0,n(t) +

∞∑
j=0

∞∑
n=−∞

wj,nψj,n(t).

Recall that the (orthonormal) basis functions are scaled and shifted
versions of the two template functions φ0(t) and ψ0(t). Moreover,
these two functions were linear combinations of shifts of a contracted
version of φ0(t):

φ0(t) = φ0(2t) + φ0(2t− 1), ψ0(t) = φ0(2t)− φ0(2t− 1).

This gave us the very nice interpretation of the wavelet coefficients
wj,n capturing the differences between piecewise-constant approx-
imations of x(t) at different dyadic scales:

x(t) = P V0[x(t)] + PW0
[x(t)]︸ ︷︷ ︸

=P V1 [x(t)]

+PW1
[x(t)]

︸ ︷︷ ︸
=P V2 [x(t)]

+PW2
[x(t)]

︸ ︷︷ ︸
=P V3 [x(t)]

+ · · · .

Along with this interpretation, we also developed an efficient filter-
bank implementation for computing this decomposition from some
initial approximation x̂J(t) = P VJ [x(t)].
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Now that we have seen how to generalize this filterbank structure,
it is natural to ask whether these new filterbanks have a similar
correspondence to other types of approximation spaces Vj built using
scaling functions φ0(t) other than just piecewise-constant functions.
Indeed we can, and it leads to a very rich family of orthonormal
wavelet bases.

As in the Haar case, we will see that essentially all of the properties
of any orthonormal wavelet basis will follow from properties of the
scaling function φ0(t). Before discussing these more general wavelet
bases, we will first review some of the key properties of φ0(t) that
allowed us to interpret the Haar wavelet transform as providing a
multiscale approximation.

Multiscale approximation: Scaling spaces

For a given φ0(t), the first approximation space V0 is set of signals we
can build up from different linear combinations2 of the integer shifts
of φ0(t):

V0 = Span({φ0(t− n)}n∈Z).

The first thing we want is for {φ0(t− n)}n∈Z to be an orthobasis, so
we ask that

(P1) 〈φ0(t− k), φ0(t− n)〉 =

{
1, k = n,

0, k 6= n.

2Technically, this is the set of signals we can approximate arbitrarily well
from different linear combinations — this is the closure of the span, which
we will denote by Span.
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Now set
φj,n(t) = 2j/2φ0(2

jt− n),

so the function φ0(2
jt − n) is formed by contracting φ0(t) by a

factor of 2j, then shifting the result on a grid with spacing 2−j. For
a fixed scale j, define

Vj = Span({φj,n(t)}n∈Z).

Following the Haar case, there are two more key properties we ask
of this sequence of approximation spaces; we would like these spaces
to be nested,

(P2) Vj ⊂ Vj+1, so x(t) ∈ Vj ⇒ x(t) ∈ Vj+1,

and we also want these approximation spaces to cover all of L2(R)
in their limit:

(P3) lim
j→∞
Vj = L2(R), so lim

j→∞
P Vj [x(t)] = x(t) for all x(t) ∈ L2(R).

Now the question is: What properties does φ0(t) have to have to
ensure (P1)–(P3) hold? While the answer is not straightforward,
this question was answered completely in the late 1980s/early 1990s.
The conditions on φ0(t) are actually most easily expressed in terms of
the inter-scale relationships between the {φj,n}n∈Z and {φj+1,n}n∈Z,
which you may recall is exactly what gave rise to the filterbank struc-
ture for computing the Haar wavelet transform.

Specifically, given a φ0(t), define the sequence of numbers g0[n]

g0[n] = 〈φ0(t),
√

2φ0(2t− n)〉. (1)

137

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 13:42, October 2, 2019



It turns out that whether properties (P1)–(P3) hold depends en-
tirely on properties of this sequence of numbers. Let G0(e

jω) be
the discrete-time Fourier transform of g0[n]. Then we have following
major result:

If g0[n] obeys the following three properties, then the approximation
spaces {Vj}j≥0 obey properties (P1)–(P3):

(G1) |G0(e
jω)|2 + |G0(e

j(ω+π))|2 = 2, for all − π ≤ ω ≤ π

(G2) G0(e
j0) =

∑
n

g0[n] =
√

2,

(G3) |G0(e
jω)| > 0 for all |ω| ≤ π

2
.

The proof of this result is long and complicated.3 Note, however,
that Condition (G1) is somewhat familiar. Specifically, (G1) is
simply another way of writing v2 of the “No distortion” filterbank
condition. The remaining conditions are more technical requirements
that allow us to construct φ0(t) from knowledge of g0[n] (see the
additional technical details at end of notes.)

3There are a few good references here. I will recommend Chapter 7 of A
Wavelet Tour of Signal Processing, by S. Mallat, and Daubechies’ book
Ten Lectures on Wavelets.
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Multiscale approximation: Wavelet spaces

The complementary wavelet spaces and wavelet basis functions can
also be generated from the coefficient sequence g0[n]. This is detailed
as our second major result:

Suppose φ0(t) with corresponding g0[n] obeys (G1)–(G3). Seta

g1[n] = (−1)1−ng0[1− n],

and

ψ0(t) =
∞∑

n=−∞
g1[n]
√

2φ0(2t− n).

Then, along with integer shifts of the scaling function
φ0,n(t) = φ0(t− n), the set of all dyadic shifts and contractions of
ψ0(t),

ψj,n(t) = 2j/2ψ0(2
jt− n), n ∈ Z, j = 0, 1, 2, . . . ,

form an orthobasis for L2(R). That is,

x(t) =
∞∑

n=−∞
〈x,φ0,n〉φ0,n(t) +

∞∑
j=0

∞∑
n=−∞
〈x,ψj,n〉ψj,n(t)

for all x(t) ∈ L2(R).

aNote that the choice of g1[n] here is precisely the “alternating flip” con-
struction we described in the context of filterbanks.
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As with the Haar case, the wavelet coefficients at scale j represent
the difference between the approximation of a signal in Vj and the
approximation in Vj+1. That is, if we set

Wj = Span ({ψj,n(t)}n∈Z)

then

1. For fixed j, 〈ψj,n, ψj,`〉 = 0 for n 6= `. That is, the {ψj,n(t)}n∈Z
are orthobasis for Wj.

2. Wj ⊥ Vj′ for all j ′ ≤ j. Notice that sinceWj ⊂ Vj+1, it follows
that the sequence of spaces V0,W0,W1, . . . are all mutually or-
thogonal.

3. Vj+1 = Vj ⊕Wj. That is, every v(t) ∈ Vj+1 can be written as

v(t) = P Vj [v(t)] + PWj
[v(t)].

As the previous property states, these two components are or-
thogonal to one another.

In summary, this means we can break L2(R) into orthogonal parts,

L2(R) = V0 ⊕W0 ⊕W1 ⊕W2 ⊕ · · ·

and we have an orthobases for each of these.

140

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 13:42, October 2, 2019



Vanishing moments and support size

In addition to forming an orthobasis with a certain multiscale form,
there are other desirable properties that wavelet systems often have.

Vanishing moments. We say that ψ0(t) has p vanishing moments
if ∫ ∞

−∞
tqψ0(t) dt = 0, for q = 0, 1, . . . , p− 1.

This means that ψ0(t) is orthogonal to all polynomials of degree
p− 1 or smaller. Since shifting a polynomial just gives you another
polynomial of the same order, ψ0(t − n) is also orthogonal to these
polynomials. This means that polynomials that have degree at most
p − 1 are completely contained in the scaling space V0 — all of the
wavelet coefficients of a polynomial are zero.

Compact support. The support of ψ0(t) is the size of the interval
on which it is non-zero. If ψ0(t) is supported on [0, L], then ψ0,n(t) =
ψ0(t− n) is supported on [n, n + L], and

w0,n = 〈x,ψ0,n〉 =

∫ n+L

n

x(t)ψ0,n(t) dt.

This means that w0,n only depends on what x(t) is doing on [n, n+L]
— the wavelet coefficients are recording local information about the
behavior of x(t).

These two properties make wavelets very good for representing signals
which are smooth except at a few singularities.
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Daubechies Wavelets

In the late 1980s, Ingrid Daubechies presented a systematic frame-
work for designing wavelets with vanishing moments and compact
support. For any integer p, there is a method for solving for the
g0[n] that corresponds to a wavelet with p vanishing moments and
has support size 2p− 1.

Here are the filter coefficients for p = 2, . . . , 10. (p = 1 gives you
Haar wavelets.):

From Mallat, A Wavelet Tour of Signal Processing
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Here are pictures of some of the scaling functions (N = 2p in the
captions below):

From Burrus et al, Introduction to Wavelets ...
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Here are pictures of some of the wavelet functions (N = 2p in the
captions below):

From Burrus et al, Introduction to Wavelets ...
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Technical Details: Perfect reconstruction and
orthogonal filterbanks

The z-transform

Recall that for a discrete-time signal x[n], the z-transform is defined
as

X(z) =
∞∑

n=−∞
x[n]z−n,

where z is a complex number.4

We can think of the z-transform as a generalization of the DTFT.
Specifically, by evaluating the z-transform X(z) at z = ejω we obtain
the DTFT of x[n], i.e. X(ejω).

The z-transform also generalizes the familiar property of the DTFT
that convolution in time is equivalent to multiplication in frequency.
Specifically, if y[n] denotes the convolution of x[n] with h[n], then
we have

Y (z) = X(z)H(z).

Downsampling

Now consider the process of taking a signal x[n] and downsam-
pling it by a factor of 2. Specifically, let

y[n] = x[2n].

4For any given z, this sum may or may not converge, and so we also associate
with X(z) a region of convergence (which will depend on x[n]) that tells
us the set of possible z for which the sum converges. Fortunately, we will
not need to worry much about this.
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What is the relationship between X(z) and Y (z)?

Observe that

Y (z) =
∞∑

n=−∞
x[2n]z−n

=
∑
` even

x[`]z−`/2

=
1

2

∞∑
`=−∞

x[`]z−`/2 +
1

2

∞∑
`=−∞

x[`](−1)−`z−`/2

=
1

2

∞∑
`=−∞

x[`](z1/2)−` +
1

2

∞∑
`=−∞

x[`](−z1/2)−`

=
1

2

[
X(z1/2) + X(−z1/2)

]
.

This may seem a bit difficult to interpret, but things are a bit clearer
when we look at the DTFT. Specifically, if we let z = ejω, then

X(z1/2) = X(ejω/2) X(−z1/2) = X(−ejω/2) = X(ejω/2+π).

Note thatX(ejω/2) is simply a dilated version ofX(ejω). TheX(ejω/2+π)
term corresponds to a dilation of X(ejω) shifted by π. This corre-
sponds to exactly what one would have obtained if x[n] corresponded
to samples of a continuous-time signal which we then sampled at half
of the original sampling rate – the spectrum is dilated (because of
the lower sampling rate) but there is also potential aliasing, which
is accounted for by the X(ejω/2+π) term.
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Upsampling

Now we turn to the problem of taking a signal x[n] and upsampling
it by a factor of 2. By this we mean generating a signal

y[n] =

{
x[n/2] n even

0 n odd
.

We again ask the question: what is the relationship between X(z)
and Y (z)?

The answer is straightforward:

Y (z) =
∞∑

n=−∞
y[n]z−n

=
∑
n even

x[n/2]z−n

=
∞∑

`=−∞
x[`]z2`

=
∞∑

`=−∞
x[`](z2)`

= X(z2)

Note that this implies a compression of the DTFT:

X(ejω)→ X(ej2ω).
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Perfect reconstruction conditions

We are now in a position to derive conditions on the filters in a
filterbank (in terms of their z-transforms) that will ensure that we
perfectly reconstruct the input. Recall the architecture:

2

2

h0[n]

h1[n]

sJ�1[n]

wJ�1[n]

x[n]

2

2

x̃[n]

g0[n]

g1[n]

u[n]

v[n]

We want to ensure that x̃[n] = x[n]. If we use causal filters, this is
not quite possible and we instead relax our notion of perfect recon-
struction to instead require x̃[n] = x[n−m] for some delay m.

Towards this end, note that we can write

SJ−1(z) =
1

2

[
H0(z

1/2)X(z1/2) + H0(−z1/2)X(−z1/2)
]

and thus

U(z) =
1

2
G0(z) [H0(z)X(z) + H0(−z)X(−z)] .

Similarly, we have

V (z) =
1

2
G1(z) [H1(z)X(z) + H1(−z)X(−z)] .

Combining these and rearranging we have

X̃(z) =
1

2
[G0(z)H0(z) + G1(z)H1(z)]X(z)

+
1

2
[G0(z)H0(−z) + G1(z)H1(−z)]X(−z).
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We want to have X̃(z) = z−mX(z). The way to make this occur
is straightforward: the filters must satisfy the following perfect
reconstruction conditions:

G0(z)H0(−z) + G1(z)H1(−z) = 0 (Alias cancellation)

and
G0(z)H0(z) + G1(z)H1(z) = 2z−m. (No distortion)

How can we design filters that will satisfy these conditions? Suppose
for the moment that the filters G0(z) and G1(z) are given – what is
a natural choice for H0(z) and H1(z)?

H0(z) = G1(−z) and H1(z) = −G0(−z).

With these choices we immediately have that

G0(z)H0(−z) + G1(z)H1(−z) = G0(z)G1(z)−G1(z)G0(z) = 0,

and thus the alias cancellation condition is satisfied.

What do these filters look like? Consider the FIR filters with z-
transforms

G0(z) = α0 + α1z
−1 + α2z

−2

G1(z) = β0 + β1z
−1 + β2z

−2 + β3z
−3.

In this case,

H0(z) = β0 − β1z
−1 + β2z

−2 − β3z
−3

H1(z) = −α0 + α1z
−1 − α2z

−2.
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The question then becomes, how can we design G0(z) and G1(z)
to ensure that they satisfy the no distortion condition? With the
choices for H0(z) and H1(z) given above, we can write this condition
as

T (z) = G0(z)G1(−z)−G1(z)G0(−z) = 2z−m.

There are an endless possible variety of choices at this point. We
will discuss the most common approach next time, but for now we
simply note that if we fix G0(z), then our design problem reduces to
constructing a G1(z) such that T (z) = 2z−m, at which point the rest
of the filterbank H0(z) and H1(z) are determined.

Orthogonal filterbanks

Recall that a perfect reconstruction filterbank can be designed by
first constructing G0(z) and G1(z) satisfying

G0(z)G1(−z)−G1(z)G0(−z) = 2z−m. (No distortion)

Once we have such a G0(z) and G1(z), we can then define the filters

H0(z) = G1(−z) and H1(z) = −G0(−z),

and automatically form a perfect reconstruction filterbank.

Thus our central challenge is to construct G0(z) and G1(z) satisfying
the no distortion condition. Here we will discuss one possible solution
which satisfies some particularly nice properties. Suppose that G0(z)
is given. Then the alternating flip construction is to set

G1(z) = −z−mG0(−z−1),

where m is odd and will correspond to the total delay of the system.
What does G1(z) look like in this case? Suppose that

G0(z) = α0 + α1z
−1 + α2z

−2 + α3z
−3.
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Then for m = 3 we have

G0(z
−1) = α0 + α1z + α2z

2 + α3z
3

G0(−z−1) = α0 − α1z + α2z
2 − α3z

3

−G0(−z−1) = −α0 + α1z − α2z
2 + α3z

3

G1(z) = α3 − α2z
−1 + α1z

−2 − α0z
−3.

Note that with this construction (whenm is odd),G1(−z) = z−mG0(z
−1),

and thus the no distortion condition reduces to

z−m
[
G0(z)G0(z

−1) + G0(−z)G0(−z−1)
]

= 2z−m.

Alternatively, if we set P (z) = G0(z)G0(z
−1), then this simply re-

duces to
P (z) + P (−z) = 2. (No distortion (v2))

Recalling that

P (z) =
∞∑

n=−∞
p[n]z−n,

we can see that the above condition on P (z) reduces to

p[n] =


1 n = 0

0 n 6= 0, n even

anything n odd.

But what exactly is p[n], and what does it tell us about g0[n]? Using
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the fact that P (z) = G0(z)G0(z
−1), we have

∞∑
n=−∞

p[n]z−n =

( ∞∑
k=−∞

g0[k]z−k
)( ∞∑

m=−∞
g0[m]zm

)

=
∞∑

k=−∞

∞∑
m=−∞

g0[k]g0[m]zm−k

=
∞∑

n=−∞

∞∑
k=−∞

g0[k]g0[k − n]z−n.

Thus, we can conclude that

p[n] =
∞∑

k=−∞
g0[k]g0[k − n],

i.e. p[n] is just the autocorrelation function of g0[n], and the per-
fect reconstruction condition reduces to a simple constraint on this
function.

To summarize, the procedure we have described to design a filterbank
consists of designing g0[n] so that the autocorrelation function p[n]
is zero for all even n except n = 0, and then using the “alternating
flip” construction of g1[n], which together dictate h0[n] and h1[n].
In this context, the constraint on p[n] has significant consequences.
Specifically, for any filterbank designed in this way, the filterbank
architecture

2

2

h0[n]

h1[n]

sJ�1[n]

wJ�1[n]

x[n]
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can be thought of as computing a representation of x[n] in an or-
thogonal basis.

Specifically, note that here

sJ−1[n] =
∞∑

k=−∞
x[k]h0[2n− k]

wJ−1[n] =
∞∑

k=−∞
x[k]h1[2n− k].

If we define un = h0[2n − k] and vn = h1[2n − k], then we can
interpret this as

sJ−1[n] = 〈un,x〉 and wJ−1[n] = 〈vn,x〉.

The constraint on p[n] turns out to be exactly what we need to
ensure that B = {un}n ∪ {vn} are orthonormal. This together with
the perfect reconstruction property of the filterbank implies that B
forms an orthonormal basis for `2.
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Technical Details: Constructing φ0(t)

Note that with (P2) established, we know that φ0(t) ∈ V1. This
gives us an additional interpretation of the g0[n]; they tell us how to
build up φ0(t) out of shifts of the contracted version φ0(2t):

φ0(t) =
∞∑

n=−∞
g0[n]

√
2φ0(2t− n). (2)

Given a particular φ0(t), we can of course generate the g0[n] using
(1) – but we can also go the other way. If we design a sequence g0[n]
that obeys the three properties above, it specifies a unique scaling
function φ0(t). To get φ0(t) from g0[n], we take the continuous-time
Fourier transform of both sides of (2):

Φ0(jΩ) =
∞∑

n=−∞
g0[n]
√

2

∫ ∞
−∞

φ0(2t− n)e−jΩt dt

=
∞∑

n=−∞
g0[n]

1√
2
ejΩn/2Φ0(jΩ/2)

=
1√
2
G(ejΩ/2)Φ0(jΩ/2)

We can again expand Φ0(jΩ/2) = 1√
2
G(ejΩ/4)Φ0(jΩ/4), etc. Condi-

tion (G3) above means that the limit exists, and we have

Φ0(jΩ) =

( ∞∏
p=1

G(ej2−pΩ)√
2

)
Φ0(j0) =

∞∏
p=1

G(ej2−pΩ)√
2

,

since Φ0(j0) = 1 (this follows from integrating both sides of (2)
and applying Condition (G2) above). Unfortunately, except in spe-
cial cases it is hard to compute Φ0(jΩ) past the iterative expression
above. This is why wavelets are usually specified in terms of their
corresponding sequences g0[n].
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