
In the next few lectures, we will look at a few examples of orthobasis
expansions that are used in modern signal processing.

Cosine transforms

The cosine-I transform is an alternative to Fourier series; it is an
expansion in an orthobasis for functions on [0, 1] (or any interval on
the real line) where the basis functions look like sinusoids. There are
two main differences that make it more attractive than Fourier series
for certain applications:

1. the basis functions and the expansion coefficients are real-
valued;

2. the basis functions have different symmetries.

The discrete version of cosine-I (the “DCT”) is used in both the
JPEG image compression standard and the MPEG video compres-
sion standard; we will discuss this more later in this section.

Definition. The cosine-I basis functions for t ∈ [0, 1] are

ψk(t) =

{
1 k = 0√

2 cos(πkt) k = 1, 2, . . .
. (1)

We can derive the cosine-I basis from the Fourier series in the follow-
ing manner. Let x(t) be a signal on the interval [0, 1]. Let x̃(t) be
its “reflection extension” on [−1, 1]. That is

x̃(t) =

{
x(−t) −1 ≤ t ≤ 0

x(t) 0 ≤ t ≤ 1

88

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 14:07, September 16, 2019



x(t) x̃(t)

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

−1 −0.5 0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

We can use Fourier series to synthesis x̃(t):

x̃(t) =
∞∑

k=−∞

αk e
jπkt.

Since x̃(t) is real, we will have α−k = αk, and so we can rewrite this
as

x̃(t) = a0 +
∞∑
k=1

ak cos(πkt) +
∞∑
k=1

bk sin(πkt),

where a0 = α0, ak = 2 Re {αk}, and bk = −2 Im {αk}. Since x̃(t) is
even and sin(πkt) is odd, 〈x̃(t), sin(πkt)〉 = 0 and so

bk = 0, for all k = 1, 2, 3, . . . ,

and so x̃(t) on [−1, 1] can be written as

x̃(t) = a0 +
∞∑
k=1

ak cos(πkt).

Since we can use this expansion to build up any symmetric function
on [−1, 1], it means that the right hand side of the function on [0, 1]

89

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 14:07, September 16, 2019



is arbitrary, so any x(t) on [0, 1] can be written as

x(t) = a0 +
∞∑
k=1

ak cos(πkt).

All that remains to show that {ψk : k = 1, 2, . . .} is an orthobasis is

〈ψk,ψ`〉 = 2

∫ 1

0

cos(πkt) cos(π`t) dt =

{
1 k = `

0 k 6= `
.

I will let you do this at home.

One way to think about the cosine-I expansion is that we are taking
an oversampled Fourier series, with frequencies spaced at multiples
of π rather than 2π, but then only using the real part.

Here are the first four cosine-I basis functions:

ψ0(t) ψ1(t) ψ2(t) ψ3(t)

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

1.5

90

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 14:07, September 16, 2019



The discrete cosine transform (DCT)

Just as there is a version of Fourier series for sampled signals on
an interval (i.e. finite dimensional signals in CN), this is the discrete
Fourier transform (DFT), there is a version of the cosine-I transform
for real-valued finite signals as well. This is called the discrete
cosine transform, or DCT.

The DCT basis functions for RN are

ψk[n] =


√

1
N

k = 0√
2
N

cos
(
πk
N

(n + 1
2
)
)

k = 1, . . . , N − 1
(2)

for sample indices n = 0, 1, . . . , N − 1. Showing that

N−1∑
n=0

ψk[n]ψ`[n] =

{
1 k = `

0 k 6= `

is an exercise you can do at home. Notice that the samples of the
cosines are on the half-sample points (we see (n+ 1/2) in the expres-
sion above instead of n).

Just as the cosine-I transform can be computed from the Fourier
series coefficients of a symmetric extension of the signal, the DCT
can be computed from the DFT of a symmetric extension. That
means we have a fast algorithm for computing the DCT — the
cost is essentially the same as for an FFT, O(N logN).

91

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 14:07, September 16, 2019



The cosine-I and DCT for 2D images

Just as for Fourier series and the discrete Fourier transform, we can
leverage the 1D cosine-I basis and the DCT into separable bases for
2D images.

Definition. Let {ψk(t)}k≥0 be the cosine-I basis in (1). Set

ψ2D
k1,k2

(s, t) = ψk1(s)ψk2(t).

Then {ψ2D
k1,k2

(s, t)}k1,k2∈N is an orthonormal basis for L2([0, 1]2)

This is just a particular instance of a general fact. It is straight-
forward to argue (you can do so at home) that if {ψγ(t)}γ∈Γ is an
orthonormal basis for L2([0, 1]), then {ψγ1(s)ψγ2(t)}γ1,γ2∈Γ is an or-
thonormal basis for L2([0, 1]2).

The DCT extends to 2D in the same way.

Definition. Let {ψk[n]}0≤k≤N−1 be the DCT basis in (2). Set

ψ2D
j,k [m,n] = ψj[m]ψk[n].

Then {ψ2D
j,k [m,n]}0≤j,k≤N−1 is an orthonormal basis for RN × RN .

92

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 14:07, September 16, 2019



The 64 DCT basis functions for N = 8 are shown below:

←
j

k →
ψj,k[m,n] for j, k = 0, . . . , 7

2D DCT coefficients are indexed by two integers, and so are naturally
arranged on a grid as well:

α0,0 α0,1 · · · α0,N−1

α1,0 α1,1 · · · α1,N−1
... ... ... ...

αN−1,0 αN−1,1 · · · αN−1,N−1

93

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 14:07, September 16, 2019



The DCT in image and video compression

The DCT is basis of the popular JPEG image compression standard.
The central idea is that while energy in a picture is distributed more
or less evenly throughout, in the DCT transform domain it tends to
be concentrated at low frequencies.

JPEG compression work roughly as follows:

1. Divide the image into 8× 8 blocks of pixels

2. Take a DCT within each block

3. Quantize the coefficients — the rough effect of this is to keep
the larger coefficients and remove the samller ones

4. Bitstream (losslessly) encode the result.

There are some details we are leaving out here, probably the most
important of which is how the three different color bands are dealt
with, but the above outlines the essential ideas.

The basic idea is that while the energy within an 8×8 block of pixels
tends to be more or less evenly distributed, the DCT concentrates
this energy onto a relatively small number of transform coefficients.
Moreover, the significant coefficients tend to be at the same place in
the transform domain (low spatial frequencies).

849 850 851 852 853 854 855 856

297

298

299

300

301

302

303

304
1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

8× 8 block 2D DCT coeffs ordering

94

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 14:07, September 16, 2019



To get a rough feel for how closely this model matches reality, let’s
look at a simple example. Here we have an original image 2048×2048,
and a zoom into a 256× 256 piece of the image:

original

900 950 1000 1050 1100

250

300

350

400

450

Here is the same piece after using 1 of the 64 coefficients per block
(1/64 ≈ 1.6%), 3/64 ≈ 4.6% of the coefficients, and 10/64 ≈
15.62%:

1.6%

900 950 1000 1050 1100

250

300

350

400

450

4.6%

900 950 1000 1050 1100

250

300

350

400

450

14.6%

900 950 1000 1050 1100

250

300

350

400

450

1/64 3/64 10/64

So the “low frequency” heuristic appears to be a good one.

95

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 14:07, September 16, 2019



JPEG does not just “keep or kill” coefficients in this manner, it
quantizes them using a fixed quantization mask. Here is a common
example:

The quantization simply maps αj,k → α̃j,k using

α̃j,k = Qj,k · round

(
αj,k
Qj,k

)
You can see that the coefficients at low frequencies (upper left) are
being treated much more gently than those at higher frequencies
(lower right).

The decoder simply reconstructs each 8 × 8 block xb using the
synthesis formula

x̃b[m,n] =
7∑

k=0

7∑
`=0

α̃k,` φk,`[m,n]

By the Parseval theorem, we know exactly what the effect of quan-
tizing each coefficient is going to be on the total error, as

‖xb − x̃b‖2
2 = ‖α− α̃‖2

2 =
7∑

k=0

7∑
`=0

|αk,` − α̃k,`|2.

96

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 14:07, September 16, 2019



Video compression

The DCT also plays a fundamental role in video compression (e.g.
MPEG, H.264, etc.), but in a slightly different way. Video codecs are
complicated, but here is essentially what they do:

1. Estimate, describe, and quantize the motion in between frames.

2. Use the motion estimate to “predict” the next frame.

3. Use the (block-based) DCT to code the residual.

Here is an example video frame, along with the differences between
this frame and the next two frames (in false color):

x(t0) x(t1)− x(t0) x(t2)− x(t0)

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

The only activity is where the car is moving from left to right.

97

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 14:07, September 16, 2019


