
Orthogonal projections

Once again, suppose that given x ∈ S , we want to find the clos-
est point in a subspace T . Recall that if we have an orthobasis
{v1, . . . ,vN} for T , then the closest point x̂ can be obtained via the
simple formula

x̂ =
N∑
n=1

〈x,vn〉vn.

We can also think of x̂ as the orthogonal projection of x onto
T . Specifically, we will use the notation P T [·] for the projection
operator onto T . P T [·] takes a signal and returns the signal in T
closest to the input. Using this notation, we have

P T [x] =
N∑
n=1

〈x,vn〉vn.

We note that, by virtue of being a projection, P T satisfies a number
of useful properties that will come in handy:

1. For any x ∈ T , P T [x] = x. This can easily be verified by
noting that if x ∈ T we can write x =

∑N
n=1 αnvn and thus

P T [x] = P T

[
N∑
n=1

αnvn

]

=
N∑
`=1

〈
N∑
n=1

αnvn,v`

〉
v`

=
N∑
`=1

N∑
n=1

αn〈vn,v`〉v` =
N∑
n=1

αnvn.
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2. As a consequence, we also have that P T is idempotent,
meaning that P 2

T = P T .

3. We can also define the complementary projection QT = I−P T ,
which computes the residual x − P T [x]. From the orthogo-
nality principle we know that for any x, P T [x] and QT [x] are
orthogonal. It is not difficult to show that QT is also an or-
thogonal projection. Indeed, QT can be constructed similarly
to P T provided we have an orthobasis for the subspace of S
which is orthogonal to T .

We can say just a little more about the last property. What we are
essentially doing here is decomposing the space S into two orthogonal
subspaces, T and all of the vectors in S which are orthogonal to T .
We denote this set by T ⊥ = S 	 T . One can also view this as
building up the space S via the direct sum S = T ⊕ T ⊥.

One consequence of the orthogonality between the projections onto
T and T ⊥ is that for any x,y ∈ S, we have that

〈P T [x], (I− P T )[y]〉 = 〈P T [x],y − P T [y]〉 = 0.

Similarly,
〈x− P T [x],P T [y]〉 = 0.

From these we have the useful and intuitive facts that

〈P T [x],y〉 = 〈P T [x],P T [y]〉 = 〈x,P T [y]〉.

Note also that since T and T ⊥ are orthogonal, if ‖ · ‖S denotes the
induced norm, then from Pythagoras we have that for any x ∈ S,

‖x‖2S = ‖P T [x]‖2S + ‖(I− P T )[x]‖2S.
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Subspace projections and linear approximation

Say {vk}∞k=0 is an orthobasis for a Hilbert space S . Let T be the
subspace spanned by the first 10 elements of {vk}:

T = span ({v0, . . . ,v9}) .
1. Given x ∈ S, what is the closest point in T (call it x̂) to x?

We have seen that it is given by the projection

x̂ = P T [x] =
9∑

k=0

〈x,vk〉vk.

2. How good an approximation is x̂ to x? If we measure this in
the induced norm ‖ · ‖S, then

‖x− x̂‖2S =

∥∥∥∥∥
∞∑
k=0

〈x,vk〉vk −
9∑

k=0

〈x,vk〉vk

∥∥∥∥∥
2

S

=

∥∥∥∥∥
∞∑

k=10

〈x,vk〉vk

∥∥∥∥∥
2

S

=
∞∑

k=10

|〈x,vk〉|2.

Since we also have

‖x‖2S =
∞∑
k=0

|〈x,vk〉|2

the (relative) approximation error for x̂ will be small if the first 10
transform coefficients

〈x,v0〉, 〈x,v1〉, . . . , 〈x,v9〉,
contain “most” of the total energy.
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Of course, there is nothing special about taking the first 10 coeffi-
cients. We can just as easily form a K term approximation using

x̂K =
K−1∑
k=0

〈x,vk〉vk

which has error

‖x− x̂K‖2S =
∞∑
k=K

|〈x,vk〉|2.

If the sum above is small for moderately large K, we can “compress”
x by using just the first K terms in the expansion.

This is precisely what is done in image and video compression —
more details on this to come soon!

Example:
Any real-valued function on [−1/2, 1/2] with even symmetry can be
built up out of harmonic cosines:

x(t) = α0 +
∞∑
k=1

αk
√

2 cos(2πkt).

(That this is true follows directly from the observation that every
signal on [−1/2, 1/2] that is real-valued and even has a Fourier series
which is real-valued and even.) This is an orthobasis expansion in
the standard inner product with

v0(t) = 1, v1(t) =
√

2 cos(2πt), . . . , vk(t) =
√

2 cos(2πkt), . . .

It is easy to check that 〈vk,v`〉 = 0, k 6= ` and 〈vk,vk〉 = 1.
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For the triangle function below

x(t) =

{
1 + 2t, −1/2 ≤ t ≤ 0

1− 2t, 0 ≤ t ≤ 1/2

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

the expansion coefficients are

α0 = 1/2,

αk =

∫ 1/2

−1/2
x(t)
√

2 cos(2πkt) dt

= 2
√

2

∫ 1/2

0

(1− 2t) cos(2πkt) dt

=

{
0 k even, k 6= 0
2
√
2

π2k2
k odd

.

First, let’s compute the norm in time and coefficient space just to
make sure they agree:

‖x‖22 =

∫ 1/2

−1/2
|x(t)|2 dt = 2

∫ 1/2

0

(1− 2t)2 dt = 1/3,

and
∞∑
k=0

|αk|2 =
1

4
+

8

π4

∞∑
k′=0

1

(1 + 2k′)4

=
1

4
+

8

π4

(
π4

96

)
=

1

3
.

82

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 12:57, September 11, 2019



When we truncate the expansion at K terms,

xK(t) =
1

2
+

K−1∑
k=1

αk
√

2 cos(2πkt),

we can interpret the result as an approximation of x(t) that is
a member of the K-dimensional subspace span({

√
2 cos(2πkt}K−1k=0 ),

and we know that it is the best approximation in that subspace.

Here are the approximation for K = 4, 6, 8:

x4(t) x6(t) x8(t)

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

We can compute the error in each of these approximations explicitly,
as

x(t)− xK(t) =
∞∑
k=0

αk
√

2 cos(2πkt)−
K−1∑
k=0

αk
√

2 cos(2πkt)

=
∞∑
k=K

αk
√

2 cos(2πkt),

and so

‖x(t)− xK(t)‖22 =
∞∑
k=K

|αk|2,
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or, since xK(t) ⊥ x(t)− xK(t),

‖x(t)− xK(t)‖22 = ‖x(t)‖22 − ‖xK(t)‖22.

In the three examples above, we have

‖x(t)− x4(t)‖22 ≈ 1.92 · 10−4, ‖x(t)− x6(t)‖22 ≈ 6.01 · 10−5,

‖x(t)− x8(t)‖22 ≈ 2.59 · 10−5.
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The Gram-Schmidt algorithm

We have seen that orthobases for a Hilbert space (or a subspace) have
many nice properties. Given any basis {vn}Nn=1 for an N -dimensional
space (or subspace), we can turn it into and orthobasis using the
Gram-Schmidt algorithm.

The goal is to take a sequence of signals {v1, . . . ,vN} and produce
{u1,u2, . . . ,uN} such that

span ({v1, . . . ,vN}) = span ({u1, . . . ,uN})

and

〈un,u`〉 =

{
1 n = `,

0 n 6= `
.

That is, {un} spans the same space as {vn}, but it is a orthobasis.

1. Choose w1 = v1 and normalize it to get1

u1 =
w1

‖w1‖
.

Clearly, u1 is an orthobasis for span({v1}).

2. To get u2, we subtract from v2 its projection onto u1:

w2 = v2 − 〈v2,u1〉u1

u2 =
w2

‖w2‖

1The norm here and below is the one induced by the inner product.
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Note that u2 is orthogonal to u1 by the orthogonality principle,
but just to make sure

〈u2,u1〉 =
1

‖w2‖
〈w2,u1〉

=
1

‖w2‖
(〈v2,u1〉 − 〈v2,u1〉〈u1,u1〉)

= 0.

So {u1,u2} is an orthobasis for span({v1,v2}).

3. At the beginning of the kth step, {u1, . . . ,uk−1} is an orthoba-
sis for span({v1, . . . ,vk−1}). We get uk by subtracting off its
projection onto span({u1, . . . ,uk−1}) and normalizing:

wk = vk −
k−1∑
`=1

〈vk,u`〉u`,

uk =
wk

‖wk‖
.

By induction, {u1, . . . ,uk} is and orthobasis for span({v1, . . . ,vk}).

Note: If at any point

vk ∈ span({v1, . . . ,vk−1})

(which means the {vn} are linearly dependent — and not a basis),
we will have

uk = 0.

When this happens, we can simply throw away uk,vk and move on.
The set of {uk} will be smaller than N , but will still be an orthobasis
for span({v1, . . . ,vN}).
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Exercise: Let S be the space of piecewise-constant signals on
[0, 1), [1, 2), [2, 3] with the standard L2 inner product. Turn the fol-
lowing basis

1 2 3

t

v1(t)

1

1 2 3

t

v2(t)

1

1 2 3

t

v3(t)

1

into an orthobasis using Gram-Schmidt.
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