Orthogonal projections

Once again, suppose that given € &, we want to find the clos-
est point in a subspace 7. Recall that if we have an orthobasis
{vy,..., vy} for T, then the closest point @ can be obtained via the
simple formula

N
T = Z(m,vn> (o

n=1

We can also think of @ as the orthogonal projection of x onto
T . Specifically, we will use the notation P+|-| for the projection
operator onto 7. P[] takes a signal and returns the signal in T
closest to the input. Using this notation, we have

We note that, by virtue of being a projection, P satisfies a number
of useful properties that will come in handy:

1. For any @ € T, Pr[x] = x. This can easily be verified by
noting that if * € T we can write x = ZnN:1 a,v,, and thus

n=1
N N
- E E AUy, Uy ) Uy
/=1 n=1
N N N
- E E Qn<vn7 ’Ug> Vy = E apUy,
/=1 n=1 n=1
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2. As a consequence, we also have that Ps is idempotent,
meaning that PQT = Pr.

3. We can also define the complementary projection Q, = I—Pr,
which computes the residual € — Py|x|. From the orthogo-
nality principle we know that for any @, Pr{x] and Q[x] are
orthogonal. It is not difficult to show that @ is also an or-
thogonal projection. Indeed, @ can be constructed similarly
to P+ provided we have an orthobasis for the subspace of §
which is orthogonal to T .

We can say just a little more about the last property. What we are
essentially doing here is decomposing the space S into two orthogonal
subspaces, T and all of the vectors in & which are orthogonal to T .
We denote this set by 7+ = § © 7. One can also view this as
building up the space S via the direct sum S =7 & T+.

One consequence of the orthogonality between the projections onto
T and T+ is that for any &,y € S, we have that

(Pyla], (I Pr)ly)) = (Prlz].y — Prly]) = 0.

Similarly,
(z — Prlz], Prly]) = 0.

From these we have the useful and intuitive facts that

(Prlz],y) = (Prlz|, Prly]) = (z, Prly]).

Note also that since T and T+ are orthogonal, if || - ||s denotes the
induced norm, then from Pythagoras we have that for any € S,

llls = 1 Prl]lls + (T — Pr)[=]]5.
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Subspace projections and linear approximation

Say {v;}2, is an orthobasis for a Hilbert space S. Let T be the
subspace spanned by the first 10 elements of {v,.}:
T =span ({vg,...,v9}).

1. Given & € S, what is the closest point in T (call it &) to a?
We have seen that it is given by the projection

9

k:O

2. How good an approximation is @ to &? If we measure this in

the induced norm || - ||, then
00 9 2
= Z xr ’Uk Z xr ’Uk
k=0 k:O S
(0. 9]
= Z(w V) Uy,
k=10 S
0
= > =, vl

Since we also have .
|23 = |(z, v
k=0

the (relative) approximation error for & will be small if the first 10
transform coefficients
<CC, ’U()>, <w7vl>7 ey <fL', ’Ug>,

contain “most” of the total energy.
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Of course, there is nothing special about taking the first 10 coefhi-
cients. We can just as easily form a K term approximation using

K-1

T = Z<$,Uk>’0k

k=0

which has error
xXO
e — @S =) (@, v
k=K

[f the sum above is small for moderately large K, we can “compress”
a by using just the first K terms in the expansion.

This is precisely what is done in image and video compression —
more details on this to come soon!

Example:
Any real-valued function on [—1/2,1/2] with even symmetry can be
built up out of harmonic cosines:

x(t) = o + Z v V2 cos(2mkt).
k=1

(That this is true follows directly from the observation that every
signal on [—1/2,1/2] that is real-valued and even has a Fourier series
which is real-valued and even.) This is an orthobasis expansion in
the standard inner product with

vo(t) = 1, vi(t) = V2cos(2mt), ..., vp(t) = V2cos(2mkt), ...
It is easy to check that (vg,v,) =0, k # £ and (v, v;) = 1.
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For the triangle function below

0 1+2t, —1/2<t<0 -
x(t) = "
1—2t, 0<t<1/2

the expansion coeflicients are

Qn = 1/2,
1/2

ap = / x(t)V/2 cos(2mkt) dt
—1/2

1/2
= 2\/5/ (1 — 2t) cos(2mkt) dt
0

_Jo k even, k # 0
132 kodd |

m2k2
First, let’s compute the norm in time and coefficient space just to
make sure they agree:

1/2 1/2
|2 = / 2(t)2dt =2 / (120 dt = 1/3,
- 0

1/2
and
x § L1
2
— + —
; ] o kzzo (11 2k)?
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When we truncate the expansion at K terms,

| K-l
rr(t) = 5t 2o 2 cos(2mkt),

1

=
I

we can interpret the result as an approximation of x(¢) that is

a member of the K-dimensional subspace span({v/2 cos(2mkt }2- 1),
and we know that it is the best approximation in that subspace.

Here are the approximation for K = 4,6, 8:

:1:4,(‘15) | :1:6,(13) | xg(t)

We can compute the error in each of these approximations explicitly,
as

=

-1

x(t) — xg(t) = i V2 cos(2mkt) — > a2 cos(2mkt)

k=0 0

=~
|

||
WK

V2 cos(2mkt),

k=K
and so
|z(t) — zx ()3 =D ol
k=K
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or, since xg(t) L x(t) — xx(t),
lz(®) — 2k @)l = =@z — lzx @)
In the three examples above, we have

|z(t) — 24|53 = 1.92-107%,  ||2(t) — 24(1)]|5 =~ 6.01 - 107,
|z(t) — 25(t)])5 ~ 2.59 - 107°.
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The Gram-Schmidt algorithm

We have seen that orthobases for a Hilbert space (or a subspace) have

many nice properties. Given any basis {v, })_, for an N-dimensional

space (or subspace), we can turn it into and orthobasis using the
Gram-Schmidt algorithm.

The goal is to take a sequence of signals {vy, ..., vy} and produce
{wi, s, ..., uy} such that

span ({vy,...,vx}) = span({uy,...,uyx})

and

(0, 117) = 1 n=1/{,
n7£_0’n/}'é€.

That is, {u,} spans the same space as {v, }, but it is a orthobasis.

1. Choose w; = v; and normalize it to get'

U, = .
L

Clearly, u; is an orthobasis for span({v}).

2. To get u,, we subtract from wv, its projection onto u;:

Wy = Vo — <U27 u1>u1
wo

Uy = ——

.||

'The norm here and below is the one induced by the inner product.

89

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 12:57, September 11, 2019



Note that u, is orthogonal to w, by the orthogonality principle,
but just to make sure

(U, u1) = s

So {wy, us} is an orthobasis for span({vy, vs}).

3. At the beginning of the k™ step, {1, ..., u;_;} is an orthoba-
sis for span({wvy,...,vp_1}). We get u;, by subtracting off its

projection onto span({w,, ..., u;_1}) and normalizing:
k-1
wy, = v, — > (Vg uw)uy,
=1
Wy
U — .
[ wg|
By induction, {uy, . . ., u;} is and orthobasis for span({vy, ..., vi}).

Note: If at any point

'Uk - Span<{vlv RN 'Uk_l}>

(which means the {v,} are linearly dependent — and not a basis),
we will have

When this happens, we can simply throw away uy, v, and move on.
The set of {u;} will be smaller than N, but will still be an orthobasis

for span({vy,...,vn}).
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Exercise: Let & be the space of piecewise-constant signals on
0,1),[1,2),[2, 3] with the standard L, inner product. Turn the fol-
lowing basis

V1 (t) V2 (t) Vs (t)

1 1 1

into an orthobasis using Gram-Schmidst.
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