Orthogonal projections

Once again, suppose that given $\boldsymbol{x} \in \mathcal{S}$, we want to find the closest point in a subspace \mathcal{T}. Recall that if we have an orthobasis $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{N}\right\}$ for \mathcal{T}, then the closest point $\hat{\boldsymbol{x}}$ can be obtained via the simple formula

$$
\hat{\boldsymbol{x}}=\sum_{n=1}^{N}\left\langle\boldsymbol{x}, \boldsymbol{v}_{n}\right\rangle \boldsymbol{v}_{n} .
$$

We can also think of $\hat{\boldsymbol{x}}$ as the orthogonal projection of \boldsymbol{x} onto \mathcal{T}. Specifically, we will use the notation $\boldsymbol{P}_{\mathcal{T}}[\cdot]$ for the projection operator onto $\mathcal{T} . \boldsymbol{P}_{\mathcal{T}}[\cdot]$ takes a signal and returns the signal in \mathcal{T} closest to the input. Using this notation, we have

$$
\boldsymbol{P}_{\mathcal{T}}[\boldsymbol{x}]=\sum_{n=1}^{N}\left\langle\boldsymbol{x}, \boldsymbol{v}_{n}\right\rangle \boldsymbol{v}_{n}
$$

We note that, by virtue of being a projection, $\boldsymbol{P}_{\mathcal{T}}$ satisfies a number of useful properties that will come in handy:

1. For any $\boldsymbol{x} \in \mathcal{T}, \boldsymbol{P}_{\mathcal{T}}[\boldsymbol{x}]=\boldsymbol{x}$. This can easily be verified by noting that if $\boldsymbol{x} \in \mathcal{T}$ we can write $\boldsymbol{x}=\sum_{n=1}^{N} \alpha_{n} \boldsymbol{v}_{n}$ and thus

$$
\begin{aligned}
\boldsymbol{P}_{\mathcal{T}}[\boldsymbol{x}] & =\boldsymbol{P}_{\mathcal{T}}\left[\sum_{n=1}^{N} \alpha_{n} \boldsymbol{v}_{n}\right] \\
& =\sum_{\ell=1}^{N}\left\langle\sum_{n=1}^{N} \alpha_{n} \boldsymbol{v}_{n}, \boldsymbol{v}_{\ell}\right\rangle \boldsymbol{v}_{\ell} \\
& =\sum_{\ell=1}^{N} \sum_{n=1}^{N} \alpha_{n}\left\langle\boldsymbol{v}_{n}, \boldsymbol{v}_{\ell}\right\rangle \boldsymbol{v}_{\ell}=\sum_{n=1}^{N} \alpha_{n} \boldsymbol{v}_{n} .
\end{aligned}
$$

2. As a consequence, we also have that $\boldsymbol{P}_{\mathcal{T}}$ is idempotent, meaning that $\boldsymbol{P}_{\mathcal{T}}^{2}=\boldsymbol{P}_{\mathcal{T}}$.
3. We can also define the complementary projection $\boldsymbol{Q}_{\mathcal{T}}=\mathbf{I}-\boldsymbol{P}_{\mathcal{T}}$, which computes the residual $\boldsymbol{x}-\boldsymbol{P}_{\mathcal{T}}[\boldsymbol{x}]$. From the orthogonality principle we know that for any $\boldsymbol{x}, \boldsymbol{P}_{\mathcal{T}}[\boldsymbol{x}]$ and $\boldsymbol{Q}_{\mathcal{T}}[\boldsymbol{x}]$ are orthogonal. It is not difficult to show that $\boldsymbol{Q}_{\mathcal{T}}$ is also an orthogonal projection. Indeed, $\boldsymbol{Q}_{\mathcal{T}}$ can be constructed similarly to $\boldsymbol{P}_{\mathcal{T}}$ provided we have an orthobasis for the subspace of \mathcal{S} which is orthogonal to \mathcal{T}.

We can say just a little more about the last property. What we are essentially doing here is decomposing the space \mathcal{S} into two orthogonal subspaces, \mathcal{T} and all of the vectors in \mathcal{S} which are orthogonal to \mathcal{T}. We denote this set by $\mathcal{T}^{\perp}=\mathcal{S} \ominus \mathcal{T}$. One can also view this as building up the space \mathcal{S} via the direct $\operatorname{sum} \mathcal{S}=\mathcal{T} \oplus \mathcal{T}^{\perp}$.

One consequence of the orthogonality between the projections onto \mathcal{T} and \mathcal{T}^{\perp} is that for any $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{S}$, we have that

$$
\left\langle\boldsymbol{P}_{\mathcal{T}}[\boldsymbol{x}],\left(\mathbf{I}-\boldsymbol{P}_{\mathcal{T}}\right)[\boldsymbol{y}]\right\rangle=\left\langle\boldsymbol{P}_{\mathcal{T}}[\boldsymbol{x}], \boldsymbol{y}-\boldsymbol{P}_{\mathcal{T}}[\boldsymbol{y}]\right\rangle=0 .
$$

Similarly,

$$
\left\langle\boldsymbol{x}-\boldsymbol{P}_{\mathcal{T}}[\boldsymbol{x}], \boldsymbol{P}_{\mathcal{T}}[\boldsymbol{y}]\right\rangle=0
$$

From these we have the useful and intuitive facts that

$$
\left\langle\boldsymbol{P}_{\mathcal{T}}[\boldsymbol{x}], \boldsymbol{y}\right\rangle=\left\langle\boldsymbol{P}_{\mathcal{T}}[\boldsymbol{x}], \boldsymbol{P}_{\mathcal{T}}[\boldsymbol{y}]\right\rangle=\left\langle\boldsymbol{x}, \boldsymbol{P}_{\mathcal{T}}[\boldsymbol{y}]\right\rangle .
$$

Note also that since \mathcal{T} and \mathcal{T}^{\perp} are orthogonal, if $\|\cdot\|_{S}$ denotes the induced norm, then from Pythagoras we have that for any $\boldsymbol{x} \in \mathcal{S}$,

$$
\|\boldsymbol{x}\|_{S}^{2}=\left\|\boldsymbol{P}_{\mathcal{T}}[\boldsymbol{x}]\right\|_{S}^{2}+\left\|\left(\mathbf{I}-\boldsymbol{P}_{\mathcal{T}}\right)[\boldsymbol{x}]\right\|_{S}^{2}
$$

Subspace projections and linear approximation

Say $\left\{\boldsymbol{v}_{k}\right\}_{k=0}^{\infty}$ is an orthobasis for a Hilbert space \mathcal{S}. Let \mathcal{T} be the subspace spanned by the first 10 elements of $\left\{\boldsymbol{v}_{k}\right\}$:

$$
\mathcal{T}=\operatorname{span}\left(\left\{\boldsymbol{v}_{0}, \ldots, \boldsymbol{v}_{9}\right\}\right) .
$$

1. Given $\boldsymbol{x} \in \mathcal{S}$, what is the closest point in \mathcal{T} (call it $\hat{\boldsymbol{x}}$) to \boldsymbol{x} ? We have seen that it is given by the projection

$$
\hat{\boldsymbol{x}}=\boldsymbol{P}_{\mathcal{T}}[\boldsymbol{x}]=\sum_{k=0}^{9}\left\langle\boldsymbol{x}, \boldsymbol{v}_{k}\right\rangle \boldsymbol{v}_{k}
$$

2. How good an approximation is $\hat{\boldsymbol{x}}$ to \boldsymbol{x} ? If we measure this in the induced norm $\|\cdot\|_{S}$, then

$$
\begin{aligned}
\|\boldsymbol{x}-\hat{\boldsymbol{x}}\|_{S}^{2} & =\left\|\sum_{k=0}^{\infty}\left\langle\boldsymbol{x}, \boldsymbol{v}_{k}\right\rangle \boldsymbol{v}_{k}-\sum_{k=0}^{9}\left\langle\boldsymbol{x}, \boldsymbol{v}_{k}\right\rangle \boldsymbol{v}_{k}\right\|_{S}^{2} \\
& =\left\|\sum_{k=10}^{\infty}\left\langle\boldsymbol{x}, \boldsymbol{v}_{k}\right\rangle \boldsymbol{v}_{k}\right\|_{S}^{2} \\
& =\sum_{k=10}^{\infty}\left|\left\langle\boldsymbol{x}, \boldsymbol{v}_{k}\right\rangle\right|^{2} .
\end{aligned}
$$

Since we also have

$$
\|\boldsymbol{x}\|_{S}^{2}=\sum_{k=0}^{\infty}\left|\left\langle\boldsymbol{x}, \boldsymbol{v}_{k}\right\rangle\right|^{2}
$$

the (relative) approximation error for \hat{x} will be small if the first 10 transform coefficients

$$
\left\langle\boldsymbol{x}, \boldsymbol{v}_{0}\right\rangle,\left\langle\boldsymbol{x}, \boldsymbol{v}_{1}\right\rangle, \ldots,\left\langle\boldsymbol{x}, \boldsymbol{v}_{9}\right\rangle,
$$

contain "most" of the total energy.

Of course, there is nothing special about taking the first 10 coefficients. We can just as easily form a K term approximation using

$$
\hat{\boldsymbol{x}}_{K}=\sum_{k=0}^{K-1}\left\langle\boldsymbol{x}, \boldsymbol{v}_{k}\right\rangle \boldsymbol{v}_{k}
$$

which has error

$$
\left\|\boldsymbol{x}-\hat{\boldsymbol{x}}_{K}\right\|_{S}^{2}=\sum_{k=K}^{\infty}\left|\left\langle\boldsymbol{x}, \boldsymbol{v}_{k}\right\rangle\right|^{2} .
$$

If the sum above is small for moderately large K, we can "compress" \boldsymbol{x} by using just the first K terms in the expansion.

This is precisely what is done in image and video compression more details on this to come soon!

Example:

Any real-valued function on $[-1 / 2,1 / 2]$ with even symmetry can be built up out of harmonic cosines:

$$
x(t)=\alpha_{0}+\sum_{k=1}^{\infty} \alpha_{k} \sqrt{2} \cos (2 \pi k t) .
$$

(That this is true follows directly from the observation that every signal on $[-1 / 2,1 / 2]$ that is real-valued and even has a Fourier series which is real-valued and even.) This is an orthobasis expansion in the standard inner product with

$$
v_{0}(t)=1, v_{1}(t)=\sqrt{2} \cos (2 \pi t), \ldots, v_{k}(t)=\sqrt{2} \cos (2 \pi k t), \ldots
$$

It is easy to check that $\left\langle\boldsymbol{v}_{k}, \boldsymbol{v}_{\ell}\right\rangle=0, k \neq \ell$ and $\left\langle\boldsymbol{v}_{k}, \boldsymbol{v}_{k}\right\rangle=1$.

For the triangle function below

$$
x(t)= \begin{cases}1+2 t, & -1 / 2 \leq t \leq 0 \\ 1-2 t, & 0 \leq t \leq 1 / 2\end{cases}
$$

the expansion coefficients are

$$
\begin{aligned}
\alpha_{0} & =1 / 2, \\
\alpha_{k} & =\int_{-1 / 2}^{1 / 2} x(t) \sqrt{2} \cos (2 \pi k t) \mathrm{d} t \\
& =2 \sqrt{2} \int_{0}^{1 / 2}(1-2 t) \cos (2 \pi k t) \mathrm{d} t \\
& = \begin{cases}0 & k \text { even, } k \neq 0 . \\
\frac{2 \sqrt{2}}{\pi^{2} k^{2}} & k \text { odd }\end{cases}
\end{aligned}
$$

First, let's compute the norm in time and coefficient space just to make sure they agree:

$$
\|\boldsymbol{x}\|_{2}^{2}=\int_{-1 / 2}^{1 / 2}|x(t)|^{2} \mathrm{~d} t=2 \int_{0}^{1 / 2}(1-2 t)^{2} \mathrm{~d} t=1 / 3
$$

and

$$
\begin{aligned}
\sum_{k=0}^{\infty}\left|\alpha_{k}\right|^{2} & =\frac{1}{4}+\frac{8}{\pi^{4}} \sum_{k^{\prime}=0}^{\infty} \frac{1}{\left(1+2 k^{\prime}\right)^{4}} \\
& =\frac{1}{4}+\frac{8}{\pi^{4}}\left(\frac{\pi^{4}}{96}\right) \\
& =\frac{1}{3} .
\end{aligned}
$$

When we truncate the expansion at K terms,

$$
x_{K}(t)=\frac{1}{2}+\sum_{k=1}^{K-1} \alpha_{k} \sqrt{2} \cos (2 \pi k t)
$$

we can interpret the result as an approximation of $x(t)$ that is a member of the K-dimensional subspace $\operatorname{span}\left(\left\{\sqrt{2} \cos (2 \pi k t\}_{k=0}^{K-1}\right)\right.$, and we know that it is the best approximation in that subspace.

Here are the approximation for $K=4,6,8$:

We can compute the error in each of these approximations explicitly, as

$$
\begin{aligned}
x(t)-x_{K}(t) & =\sum_{k=0}^{\infty} \alpha_{k} \sqrt{2} \cos (2 \pi k t)-\sum_{k=0}^{K-1} \alpha_{k} \sqrt{2} \cos (2 \pi k t) \\
& =\sum_{k=K}^{\infty} \alpha_{k} \sqrt{2} \cos (2 \pi k t)
\end{aligned}
$$

and so

$$
\left\|x(t)-x_{K}(t)\right\|_{2}^{2}=\sum_{k=K}^{\infty}\left|\alpha_{k}\right|^{2},
$$

or, since $x_{K}(t) \perp x(t)-x_{K}(t)$,

$$
\left\|x(t)-x_{K}(t)\right\|_{2}^{2}=\|x(t)\|_{2}^{2}-\left\|x_{K}(t)\right\|_{2}^{2}
$$

In the three examples above, we have

$$
\begin{gathered}
\left\|x(t)-x_{4}(t)\right\|_{2}^{2} \approx 1.92 \cdot 10^{-4}, \quad\left\|x(t)-x_{6}(t)\right\|_{2}^{2} \approx 6.01 \cdot 10^{-5} \\
\left\|x(t)-x_{8}(t)\right\|_{2}^{2} \approx 2.59 \cdot 10^{-5}
\end{gathered}
$$

The Gram-Schmidt algorithm

We have seen that orthobases for a Hilbert space (or a subspace) have many nice properties. Given any basis $\left\{\boldsymbol{v}_{n}\right\}_{n=1}^{N}$ for an N-dimensional space (or subspace), we can turn it into and orthobasis using the Gram-Schmidt algorithm.

The goal is to take a sequence of signals $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{N}\right\}$ and produce $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{N}\right\}$ such that

$$
\operatorname{span}\left(\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{N}\right\}\right)=\operatorname{span}\left(\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{N}\right\}\right)
$$

and

$$
\left\langle\boldsymbol{u}_{n}, \boldsymbol{u}_{\ell}\right\rangle=\left\{\begin{array}{ll}
1 & n=\ell \\
0 & n \neq \ell
\end{array} .\right.
$$

That is, $\left\{\boldsymbol{u}_{n}\right\}$ spans the same space as $\left\{\boldsymbol{v}_{n}\right\}$, but it is a orthobasis.

1. Choose $\boldsymbol{w}_{1}=\boldsymbol{v}_{1}$ and normalize it to get ${ }^{1}$

$$
\boldsymbol{u}_{1}=\frac{\boldsymbol{w}_{1}}{\left\|\boldsymbol{w}_{1}\right\|}
$$

Clearly, \boldsymbol{u}_{1} is an orthobasis for $\operatorname{span}\left(\left\{\boldsymbol{v}_{1}\right\}\right)$.
2. To get \boldsymbol{u}_{2}, we subtract from \boldsymbol{v}_{2} its projection onto \boldsymbol{u}_{1} :

$$
\begin{aligned}
\boldsymbol{w}_{2} & =\boldsymbol{v}_{2}-\left\langle\boldsymbol{v}_{2}, \boldsymbol{u}_{1}\right\rangle \boldsymbol{u}_{1} \\
\boldsymbol{u}_{2} & =\frac{\boldsymbol{w}_{2}}{\left\|\boldsymbol{w}_{2}\right\|}
\end{aligned}
$$

[^0]Note that \boldsymbol{u}_{2} is orthogonal to \boldsymbol{u}_{1} by the orthogonality principle, but just to make sure

$$
\begin{aligned}
\left\langle\boldsymbol{u}_{2}, \boldsymbol{u}_{1}\right\rangle & =\frac{1}{\left\|\boldsymbol{w}_{2}\right\|}\left\langle\boldsymbol{w}_{2}, \boldsymbol{u}_{1}\right\rangle \\
& =\frac{1}{\left\|\boldsymbol{w}_{2}\right\|}\left(\left\langle\boldsymbol{v}_{2}, \boldsymbol{u}_{1}\right\rangle-\left\langle\boldsymbol{v}_{2}, \boldsymbol{u}_{1}\right\rangle\left\langle\boldsymbol{u}_{1}, \boldsymbol{u}_{1}\right\rangle\right) \\
& =0
\end{aligned}
$$

So $\left\{\boldsymbol{u}_{1}, \boldsymbol{u}_{2}\right\}$ is an orthobasis for $\operatorname{span}\left(\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}\right)$.
3. At the beginning of the $k^{\text {th }}$ step, $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k-1}\right\}$ is an orthobasis for $\operatorname{span}\left(\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k-1}\right\}\right)$. We get \boldsymbol{u}_{k} by subtracting off its projection onto $\operatorname{span}\left(\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k-1}\right\}\right)$ and normalizing:

$$
\begin{aligned}
\boldsymbol{w}_{k} & =\boldsymbol{v}_{k}-\sum_{\ell=1}^{k-1}\left\langle\boldsymbol{v}_{k}, \boldsymbol{u}_{\ell}\right\rangle \boldsymbol{u}_{\ell} \\
\boldsymbol{u}_{k} & =\frac{\boldsymbol{w}_{k}}{\left\|\boldsymbol{w}_{k}\right\|}
\end{aligned}
$$

By induction, $\left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k}\right\}$ is and orthobasis for $\operatorname{span}\left(\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}\right\}\right)$.

Note: If at any point

$$
\boldsymbol{v}_{k} \in \operatorname{span}\left(\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k-1}\right\}\right)
$$

(which means the $\left\{\boldsymbol{v}_{n}\right\}$ are linearly dependent - and not a basis), we will have

$$
\boldsymbol{u}_{k}=\mathbf{0}
$$

When this happens, we can simply throw away $\boldsymbol{u}_{k}, \boldsymbol{v}_{k}$ and move on. The set of $\left\{\boldsymbol{u}_{k}\right\}$ will be smaller than N, but will still be an orthobasis for $\operatorname{span}\left(\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{N}\right\}\right)$.

Exercise: Let \mathcal{S} be the space of piecewise-constant signals on $[0,1),[1,2),[2,3]$ with the standard L_{2} inner product. Turn the following basis

into an orthobasis using Gram-Schmidt.

[^0]: ${ }^{1}$ The norm here and below is the one induced by the inner product.

