
Orthogonal bases

A collection of vectors {v1,v2, . . . ,vN} in a finite dimensional vector
space S is called an orthogonal basis if

1. span({v1,v2, . . . ,vN}) = S ,

2. vj ⊥ vk (i.e. 〈vj,vk〉 = 0) for all j 6= k.

If in addition the vectors are normalized (under the induced norm),

‖vn‖ = 1, for n = 1, . . . , N,

we will call it an orthonormal basis or orthobasis.

A note on infinite dimensions

In infinite dimensions, we need to be a little more careful with what
we mean by “span”. Traditionally, the span is defined as the set
of all possible linear combinations of finitely many elements of S .
Thus, if B = {vn}n∈Z is an infinite sequence of orthogonal vectors in
a Hilbert space S , it is an orthobasis if the closure of span(B) is S ;
this is written

cl Span ({vn}n) = S.
We don’t need to get into too much, but basically this means that
every vector in S can be approximated arbitrarily well by a finite
linear combination of vectors in B.

Here is an example which illustrates the point: Let x(t) be any
function on [0, 1] which is not a polynomial — say x(t) = sin(2πt).
Let B = {1, t, t2, t3, . . .}; the span (set of a finite linear combinations
of elements) of B is all polynomials on [0, 1]. So x 6∈ span(B). But
x(t) can be approximated arbitrarily well by elements in B (using
higher and higher order polynomials) so x ∈ cl Span(B)).
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Examples.

1. S = R2, equipped with the standard inner product

v1 =
1√
2

[
1
1

]
, v2 =

1√
2

[
1
−1

]

2. S = space of piecewise constant functions on
[0, 1/4), [1/4, 1/2), [1/2, 3/4), [3/4, 1]

Example signal:

x(t)

0 0.25 0.5 0.75 1

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

The following four functions form an orthobasis for this space

v1(t) v2(t) v3(t) v4(t)

0 0.25 0.5 0.75 1
−1.5

−1

−0.5

0

0.5

1

1.5

0 0.25 0.5 0.75 1
−1.5

−1

−0.5

0

0.5

1

1.5

0 0.25 0.5 0.75 1
−1.4142

0

1.4142

0 0.25 0.5 0.75 1
−1.4142

0

1.4142
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3. Fourier series{
vk(t) =

1√
2π
ejkt , k ∈ Z

}
is an orthobasis for L2([0, 2π])

(with the standard inner product).

Let’s quickly check the orthogonality:〈
1√
2π
ejk1t,

1√
2π
ejk2t

〉
=

1

2π

∫ 2π

0

ej(k1−k2)t dt

=

{
1, k1 = k2

0, k1 6= k2

.

It is also true that the closure of span({(2π)−1/2ejkt}∞k=−∞) is
L2([0, 2π]). The proof of this is a bit involved; if you are inter-
ested, see Chapter 5 of Young’s Introduction to Hilbert Space.
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4. Sampling

Bπ/T (R) = real-valued functions which are bandlimited to π/T ,
equipped with the standard inner product. The set of functions{

vn(t) =
√
T

sin(π(t− nT )/T )

π(t− nT )
, n ∈ Z

}
is an orthobasis for Bπ/T (R). (Notice that we have a slightly
different normalization than when we looked at the sampling
theorem — we have a

√
T out front instead of T .)

Check the orthogonality:〈√
T

sin(π(t− n1T )/T )

π(t− n1T )
,
√
T

sin(π(t− n2T )/T )

π(t− n2T )

〉
=

1

2π

∫ π/T

−π/T
Te−jΩTn1ejΩTn2 dΩ (Parseval)

=
T

2π

∫ π/T

−π/T
ejΩT (n1−n2) dΩ

=

{
1, n1 = n2

0, n1 6= n2

.

That the (closure of the) span of this set isBπ/T (R) is essentially
the content of the Shannon-Nyquist sampling theorem.

Again, sampling x(t) ∈ Bπ/T (R) is equivalent to a Fourier
Series analysis of X(jΩ) on [−π/T, π/T ].
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5. Legendre Polynomials

Define
p0(t) = 1, p1(t) = t,

and then for n = 1, 2, . . .

pn+1(t) =
2n + 1

n + 1
t pn(t)−

n

n + 1
pn−1(t),

and so

p2(t) =
1

2
(3t2 − 1)

p3(t) =
1

2
(5t3 − 3t)

p4(t) =
1

8
(35t4 − 30x2 + 3)

... etc.

These pn(t) are called Legendre polynomials, and if we renor-
malize them, taking

vn(t) =

√
2n + 1

2
pn(t),

then v0(t), . . . , vN(t) are an orthobasis for polynomials of de-
gree N on [−1, 1].

Computing approximations with the Legendre basis is far more
stable than computing the approximation in the standard basis.
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Linear approximation and orthobases

Let’s return to our linear approximation problem:
Given x ∈ S, we want to find the closest point in a subspace T .

Suppose we have an orthobasis {v1, . . . ,vN} for T . Then solving
this problem is easy. Here’s why: we know the solution is

x̂ = a1v1 + a2v2 + · · · + aNvN (1)

where the an are given bya1
...
aN

 = G−1b, with G =

 〈v1,v1〉 · · · 〈vN ,v1〉
... . . . ...

〈v1,vN〉 · · · 〈vN ,vN〉

 , b =

 〈x,v1〉
...

〈x,vN〉


Now since 〈vn,vk〉 = 1 if n = k and 0 otherwise,G = I (the identity
matrix), and so G−1 = I as well, anda1

...
aN

 =

 〈x,v1〉
...

〈x,vN〉

 . (2)

So calculating the closest point is as easy as computing N inner
products — no matrix inversion necessary.

Combining the expressions (1) and (2) gives us the compact expres-
sion

x̂ =
N∑
n=1

〈x,vn〉vn.
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Example. Suppose x(t) ∈ L2([0, 4]) is

x(t) =

{
t 0 ≤ t ≤ 2

4− t 2 ≤ t ≤ 4
t

x(t)

2

42

Let T = piecewise constant functions on [0, 1), [1, 2), [2, 3), [3, 4].

Find the closest point in T to x. A good orthobasis to use is

vn(t) =

{
1 (n− 1) ≤ t ≤ n

0 otherwise
, n = 1, 2, 3, 4.
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Orthobasis expansions

The orthogonality principle (easily) gives us an expression for the
expansion coefficients of a vector in an orthobasis.

Suppose a finite dimensional space S has an orthobasis {v1, . . . ,vn}.
Given any x ∈ S , the closest point in S to x is x itself (of course).
This gives us the following reproducing formula:

x =
N∑
n=1

〈x,vn〉vn, for all x ∈ S.

In infinite dimensions, if S has an orthobasis {vn}∞n=−∞ and x ∈ S
obeys

∞∑
n=−∞

|〈x,vn〉|2 < ∞,

then we can write

x =
∞∑

n=−∞
〈x,vn〉vn.

(We need the sequence of expansion coefficients to be square-summable
to make sure the sum of vectors above converges to something.)

In other words, x ∈ S is captured without loss by the discrete list
of numbers

. . . , 〈x,v−1〉, 〈x,v0〉, 〈x,v1〉, . . .
An orthobasis gives us a natural way to discretize vectors in S
through a set of expansion coefficients. Moreover, there is a straight-
forward and explicit way to compute these expansion coefficients —
you simply take an inner product with the corresponding basis vector.
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Example: Sampling a bandlimited function.

Bπ/T = space of bandlimited signals equipped with the standard
inner product. We have seen already that

vn(t) =
√
T

sin(π(t− nT )/T )

π(t− nT )
, n ∈ Z

is an orthobasis for Bπ/T . This means that any x ∈ Bπ/T can be
written

x =
∞∑

n=−∞
〈x,vn〉vn.

What are the 〈x,vn〉?

〈x,vn〉 =

〈
x(t) ,

√
T

sin(π(t− nT )/T )

π(t− nT )

〉
=

1

2π

∫ π/T

−π/T
X(jΩ)

√
TejnΩT dΩ

=
√
Tx(nT ),

which is simply a sample scaled by
√
T . So the reproducing formula

is just a restatement of the sampling theorem:

x(t) =
∞∑

n=−∞
〈x,vn〉vn

=
∞∑

n=−∞

√
T x(nT )

√
T sin(π(t− nT )/T )

π(t− nT )

=
∞∑

n=−∞
x(nT )gT (t− nT ).
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The moral of the story is that we can recreate a vector in a Hilbert
space from the sequence of numbers {〈x,vn〉}. We can think of
every different orthobasis for S as a different transform, and the
{〈x,vn〉} as transform coefficients.

Next we will see that our notions of distance and angle also carry
over to this discrete space.
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Parseval’s Theorem

One handy fact (and a fact we have used many times in this course
already) about the Fourier transform is that it is energy preserv-
ing,

‖x(t)‖2
2 =

∫ ∞
−∞
|x(t)|2 dt =

1

2π

∫ ∞
−∞
|X(jΩ)|2 dΩ =

1

2π
‖X(jΩ)‖2

2,

and more generally, it preserves the L2 inner product:

〈x(t), y(t)〉 =

∫ ∞
−∞

x(t)y(t) dt =
1

2π

∫ ∞
−∞

X(jΩ)Y (jΩ) dΩ

=
1

2π
〈X(jΩ), Y (jΩ)〉.

It is not not too hard to show that something very similar is true for
any orthobasis expansion. Let S be a Hilbert space with inner prod-
uct 〈·, ·〉S which induces norm ‖ · ‖S. Let {vk}k∈Γ be an orthobasis1

for S . Then for every x,y ∈ S,

〈x,y〉S =
∑
k∈Γ

αkβk,

where

αk = 〈x,vk〉S, βk = 〈y,vk〉S.
You can think of the {αk} as the transform coefficients of x and the
{βk} as the transform coefficients of y. So we have

〈x,y〉S = 〈α,β〉`2,
‖x‖2

S = ‖α‖2
2.

1We are using Γ to be an arbitrary index set here; it can be either finite,
e.g. Γ = 1, 2, . . . , N , or infinite, e.g. Γ = Z.
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⇒ An orthobasis makes every Hilbert space equivalent to `2.

All of the geometry (lengths, angles) maps into standard Euclidean
geometry in coefficient space. As you can imagine, this is a pretty
useful fact.

Proof of Parseval. With αk = 〈x,vk〉S and βk = 〈y,vk〉S, we
can write

x =
∑
k∈Γ

αk vk, and y =
∑
k∈Γ

βk vk,

and so

〈x,y〉S =

〈∑
k∈Γ

αkvk,
∑
`∈Γ

β`v`

〉
S

=
∑
k∈Γ

αk

〈
vk,
∑
`∈Γ

β`v`

〉
S

=
∑
k∈Γ

∑
`∈Γ

αkβ`〈vk,v`〉S.

For a fixed value of k, only one term in the inner sum above will be
nonzero, as 〈vk,v`〉 = 0 unless ` = k. Thus

〈x,y〉S =
∑
k∈Γ

αkβk.
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A straightforward consequence of the result above is that distances in
S under the induced norm are equivalent to Euclidean (`2) distances
in coefficient space:

‖x− y‖S = ‖α− β‖2 =

(∑
k∈Γ

(αk − βk)2

)1/2

.

Thus changing the value of an orthobasis expansion coefficient by an
amount ε will change the signal by an amount (as measured in ‖ ·‖S)
ε.

To be more precise about this, suppose x has transform coefficients
{αk = 〈x,vk〉S}. If I perturb one of them, say at location k0, by
setting

α̃k =

{
αk0 + ε k = k0

αk k 6= k0

,

and then synthesizing
x̃ =

∑
k∈Γ

α̃kvk,

we will have
‖x− x̃‖S = ε.

Notice that while the error is localized to one expansion coefficient,
it could effect the entire reconstruction, but its net effect will still be
ε.

Here is another example. Suppose I sample a signal xc(t) which
is bandlimited to π/T at a rate T , producing the sample sequence
x[n] = xc(nT ). Each of these samples gets perturbed by a (possibly
different) amount ε[n]:

x̃[n] = x[n] + ε[n].
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We resynthesize the signal using sinc interpolation:

x̃c(t) =
∞∑

n=−∞
x̃[n]hT (t− nT ),

and the difference between this signal and the “true” signal is

xc(t)− x̃c(t) =
∞∑

n=−∞
(x[n]− x̃[n])hT (t− nT )

=
∞∑

n=−∞

√
T (x[n]− x̃[n])hT (t− nT )/

√
T .

Since the {hT (t−nT )/
√
T}n∈Z are an orthobasis for Bπ/T , we know

‖xc(t)− x̃c(t)‖2
L2

=

∫
|xc(t)− x̃c(t)|2 dt

=
∞∑

n=−∞

∣∣∣√T (x[n]− x̃[n])
∣∣∣2

= T
∞∑

n=−∞
|ε[n]|2

The upshot of this is that as we change each sample, we know exactly
what the net effect will be on the reconstruction error.
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