Orthogonal bases

A collection of vectors $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{N}\right\}$ in a finite dimensional vector space \mathcal{S} is called an orthogonal basis if

1. $\operatorname{span}\left(\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{N}\right\}\right)=\mathcal{S}$,
2. $\boldsymbol{v}_{j} \perp \boldsymbol{v}_{k}$ (i.e. $\left\langle\boldsymbol{v}_{j}, \boldsymbol{v}_{k}\right\rangle=0$) for all $j \neq k$.

If in addition the vectors are normalized (under the induced norm),

$$
\left\|\boldsymbol{v}_{n}\right\|=1, \quad \text { for } n=1, \ldots, N
$$

we will call it an orthonormal basis or orthobasis.

A note on infinite dimensions

In infinite dimensions, we need to be a little more careful with what we mean by "span". Traditionally, the span is defined as the set of all possible linear combinations of finitely many elements of \mathcal{S}. Thus, if $\mathcal{B}=\left\{\boldsymbol{v}_{n}\right\}_{n \in \mathbb{Z}}$ is an infinite sequence of orthogonal vectors in a Hilbert space \mathcal{S}, it is an orthobasis if the closure of $\operatorname{span}(\mathcal{B})$ is \mathcal{S}; this is written

$$
\operatorname{cl} \operatorname{Span}\left(\left\{\boldsymbol{v}_{n}\right\}_{n}\right)=\mathcal{S} .
$$

We don't need to get into too much, but basically this means that every vector in \mathcal{S} can be approximated arbitrarily well by a finite linear combination of vectors in \mathcal{B}.

Here is an example which illustrates the point: Let $x(t)$ be any function on $[0,1]$ which is not a polynomial - say $x(t)=\sin (2 \pi t)$. Let $\mathcal{B}=\left\{1, t, t^{2}, t^{3}, \ldots\right\}$; the span (set of a finite linear combinations of elements) of \mathcal{B} is all polynomials on $[0,1]$. So $\boldsymbol{x} \notin \operatorname{span}(\mathcal{B})$. But $x(t)$ can be approximated arbitrarily well by elements in \mathcal{B} (using higher and higher order polynomials) so $\boldsymbol{x} \in \mathrm{cl} \operatorname{Span}(\mathcal{B})$).

Examples.

1. $\mathcal{S}=\mathbb{R}^{2}$, equipped with the standard inner product

$$
\boldsymbol{v}_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \boldsymbol{v}_{2}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-1
\end{array}\right]
$$

2. $\mathcal{S}=$ space of piecewise constant functions on $[0,1 / 4),[1 / 4,1 / 2),[1 / 2,3 / 4),[3 / 4,1]$

Example signal:

The following four functions form an orthobasis for this space

3. Fourier series

$$
\left\{v_{k}(t)=\frac{1}{\sqrt{2 \pi}} e^{j k t}, k \in \mathbb{Z}\right\} \quad \text { is an orthobasis for } L_{2}([0,2 \pi])
$$

(with the standard inner product).
Let's quickly check the orthogonality:

$$
\begin{aligned}
\left\langle\frac{1}{\sqrt{2 \pi}} e^{j k_{1} t}, \frac{1}{\sqrt{2 \pi}} e^{j k_{2} t}\right\rangle & =\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{j\left(k_{1}-k_{2}\right) t} \mathrm{~d} t \\
& = \begin{cases}1, & k_{1}=k_{2} \\
0, & k_{1} \neq k_{2}\end{cases}
\end{aligned}
$$

It is also true that the closure of $\operatorname{span}\left(\left\{(2 \pi)^{-1 / 2} e^{j k t}\right\}_{k=-\infty}^{\infty}\right)$ is $L_{2}([0,2 \pi])$. The proof of this is a bit involved; if you are interested, see Chapter 5 of Young's Introduction to Hilbert Space.

4. Sampling

$B_{\pi / T}(\mathbb{R})=$ real-valued functions which are bandlimited to π / T, equipped with the standard inner product. The set of functions

$$
\left\{v_{n}(t)=\sqrt{T} \frac{\sin (\pi(t-n T) / T)}{\pi(t-n T)}, n \in \mathbb{Z}\right\}
$$

is an orthobasis for $B_{\pi / T}(\mathbb{R})$. (Notice that we have a slightly different normalization than when we looked at the sampling theorem - we have a \sqrt{T} out front instead of T.)

Check the orthogonality:

$$
\begin{aligned}
& \left\langle\sqrt{T} \frac{\sin \left(\pi\left(t-n_{1} T\right) / T\right)}{\pi\left(t-n_{1} T\right)}, \sqrt{T} \frac{\sin \left(\pi\left(t-n_{2} T\right) / T\right)}{\pi\left(t-n_{2} T\right)}\right\rangle \\
& =\frac{1}{2 \pi} \int_{-\pi / T}^{\pi / T} T e^{-j \Omega T n_{1}} e^{j \Omega T n_{2}} \mathrm{~d} \Omega \quad(\text { Parseval }) \\
& =\frac{T}{2 \pi} \int_{-\pi / T}^{\pi / T} e^{j \Omega T\left(n_{1}-n_{2}\right)} \mathrm{d} \Omega \\
& = \begin{cases}1, & n_{1}=n_{2} \\
0, & n_{1} \neq n_{2}\end{cases}
\end{aligned}
$$

That the (closure of the) span of this set is $B_{\pi / T}(\mathbb{R})$ is essentially the content of the Shannon-Nyquist sampling theorem.

Again, sampling $x(t) \in B_{\pi / T}(\mathbb{R})$ is equivalent to a Fourier Series analysis of $X(j \Omega)$ on $[-\pi / T, \pi / T]$.

5. Legendre Polynomials

Define

$$
p_{0}(t)=1, \quad p_{1}(t)=t,
$$

and then for $n=1,2, \ldots$

$$
p_{n+1}(t)=\frac{2 n+1}{n+1} t p_{n}(t)-\frac{n}{n+1} p_{n-1}(t),
$$

and so

$$
\begin{aligned}
& p_{2}(t)=\frac{1}{2}\left(3 t^{2}-1\right) \\
& p_{3}(t)=\frac{1}{2}\left(5 t^{3}-3 t\right) \\
& p_{4}(t)=\frac{1}{8}\left(35 t^{4}-30 x^{2}+3\right)
\end{aligned}
$$

: etc.
These $p_{n}(t)$ are called Legendre polynomials, and if we renormalize them, taking

$$
v_{n}(t)=\sqrt{\frac{2 n+1}{2}} p_{n}(t),
$$

then $v_{0}(t), \ldots, v_{N}(t)$ are an orthobasis for polynomials of degree N on $[-1,1]$.

Computing approximations with the Legendre basis is far more stable than computing the approximation in the standard basis.

Linear approximation and orthobases

Let's return to our linear approximation problem:
Given $\boldsymbol{x} \in \mathcal{S}$, we want to find the closest point in a subspace \mathcal{T}.

Suppose we have an orthobasis $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{N}\right\}$ for \mathcal{T}. Then solving this problem is easy. Here's why: we know the solution is

$$
\begin{equation*}
\hat{\boldsymbol{x}}=a_{1} \boldsymbol{v}_{1}+a_{2} \boldsymbol{v}_{2}+\cdots+a_{N} \boldsymbol{v}_{N} \tag{1}
\end{equation*}
$$

where the a_{n} are given by

$$
\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{N}
\end{array}\right]=\boldsymbol{G}^{-1} \boldsymbol{b}, \quad \text { with } \boldsymbol{G}=\left[\begin{array}{ccc}
\left\langle\boldsymbol{v}_{1}, \boldsymbol{v}_{1}\right\rangle & \cdots & \left\langle\boldsymbol{v}_{N}, \boldsymbol{v}_{1}\right\rangle \\
\vdots & \ddots & \vdots \\
\left\langle\boldsymbol{v}_{1}, \boldsymbol{v}_{N}\right\rangle & \cdots & \left\langle\boldsymbol{v}_{N}, \boldsymbol{v}_{N}\right\rangle
\end{array}\right], \boldsymbol{b}=\left[\begin{array}{c}
\left\langle\boldsymbol{x}, \boldsymbol{v}_{1}\right\rangle \\
\vdots \\
\left\langle\boldsymbol{x}, \boldsymbol{v}_{N}\right\rangle
\end{array}\right]
$$

Now since $\left\langle\boldsymbol{v}_{n}, \boldsymbol{v}_{k}\right\rangle=1$ if $n=k$ and 0 otherwise, $\boldsymbol{G}=\mathbf{I}$ (the identity matrix), and so $\boldsymbol{G}^{-1}=\mathbf{I}$ as well, and

$$
\left[\begin{array}{c}
a_{1} \tag{2}\\
\vdots \\
a_{N}
\end{array}\right]=\left[\begin{array}{c}
\left\langle\boldsymbol{x}, \boldsymbol{v}_{1}\right\rangle \\
\vdots \\
\left\langle\boldsymbol{x}, \boldsymbol{v}_{N}\right\rangle
\end{array}\right] .
$$

So calculating the closest point is as easy as computing N inner products - no matrix inversion necessary.

Combining the expressions (1) and (2) gives us the compact expression

$$
\hat{\boldsymbol{x}}=\sum_{n=1}^{N}\left\langle\boldsymbol{x}, \boldsymbol{v}_{n}\right\rangle \boldsymbol{v}_{n} .
$$

Example. Suppose $x(t) \in L_{2}([0,4])$ is

$$
x(t)= \begin{cases}t & 0 \leq t \leq 2 \\ 4-t & 2 \leq t \leq 4\end{cases}
$$

Let $\mathcal{T}=$ piecewise constant functions on $[0,1),[1,2),[2,3),[3,4]$.
Find the closest point in \mathcal{T} to \boldsymbol{x}. A good orthobasis to use is

$$
v_{n}(t)=\left\{\begin{array}{ll}
1 & (n-1) \leq t \leq n \\
0 & \text { otherwise }
\end{array}, \quad n=1,2,3,4\right.
$$

Orthobasis expansions

The orthogonality principle (easily) gives us an expression for the expansion coefficients of a vector in an orthobasis.

Suppose a finite dimensional space \mathcal{S} has an orthobasis $\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{n}\right\}$. Given any $\boldsymbol{x} \in \mathcal{S}$, the closest point in \mathcal{S} to \boldsymbol{x} is \boldsymbol{x} itself (of course). This gives us the following reproducing formula:

$$
\boldsymbol{x}=\sum_{n=1}^{N}\left\langle\boldsymbol{x}, \boldsymbol{v}_{n}\right\rangle \boldsymbol{v}_{n}, \quad \text { for all } \boldsymbol{x} \in \mathcal{S}
$$

In infinite dimensions, if \mathcal{S} has an orthobasis $\left\{\boldsymbol{v}_{n}\right\}_{n=-\infty}^{\infty}$ and $\boldsymbol{x} \in \mathcal{S}$ obeys

$$
\sum_{n=-\infty}^{\infty}\left|\left\langle\boldsymbol{x}, \boldsymbol{v}_{n}\right\rangle\right|^{2}<\infty
$$

then we can write

$$
\boldsymbol{x}=\sum_{n=-\infty}^{\infty}\left\langle\boldsymbol{x}, \boldsymbol{v}_{n}\right\rangle \boldsymbol{v}_{n}
$$

(We need the sequence of expansion coefficients to be square-summable to make sure the sum of vectors above converges to something.)

In other words, $\boldsymbol{x} \in \mathcal{S}$ is captured without loss by the discrete list of numbers

$$
\ldots,\left\langle\boldsymbol{x}, \boldsymbol{v}_{-1}\right\rangle,\left\langle\boldsymbol{x}, \boldsymbol{v}_{0}\right\rangle,\left\langle\boldsymbol{x}, \boldsymbol{v}_{1}\right\rangle, \ldots
$$

An orthobasis gives us a natural way to discretize vectors in \mathcal{S} through a set of expansion coefficients. Moreover, there is a straightforward and explicit way to compute these expansion coefficients you simply take an inner product with the corresponding basis vector.

Example: Sampling a bandlimited function.

$B_{\pi / T}=$ space of bandlimited signals equipped with the standard inner product. We have seen already that

$$
v_{n}(t)=\sqrt{T} \frac{\sin (\pi(t-n T) / T)}{\pi(t-n T)}, \quad n \in \mathbb{Z}
$$

is an orthobasis for $B_{\pi / T}$. This means that any $\boldsymbol{x} \in B_{\pi / T}$ can be written

$$
\boldsymbol{x}=\sum_{n=-\infty}^{\infty}\left\langle\boldsymbol{x}, \boldsymbol{v}_{n}\right\rangle \boldsymbol{v}_{n}
$$

What are the $\left\langle\boldsymbol{x}, \boldsymbol{v}_{n}\right\rangle$?

$$
\begin{aligned}
\left\langle\boldsymbol{x}, \boldsymbol{v}_{n}\right\rangle & =\left\langle x(t), \sqrt{T} \frac{\sin (\pi(t-n T) / T)}{\pi(t-n T)}\right\rangle \\
& =\frac{1}{2 \pi} \int_{-\pi / T}^{\pi / T} X(j \Omega) \sqrt{T} e^{j n \Omega T} \mathrm{~d} \Omega \\
& =\sqrt{T} x(n T),
\end{aligned}
$$

which is simply a sample scaled by \sqrt{T}. So the reproducing formula is just a restatement of the sampling theorem:

$$
\begin{aligned}
x(t) & =\sum_{n=-\infty}^{\infty}\left\langle\boldsymbol{x}, \boldsymbol{v}_{n}\right\rangle \boldsymbol{v}_{n} \\
& =\sum_{n=-\infty}^{\infty} \sqrt{T} x(n T) \frac{\sqrt{T} \sin (\pi(t-n T) / T)}{\pi(t-n T)} \\
& =\sum_{n=-\infty}^{\infty} x(n T) g_{T}(t-n T)
\end{aligned}
$$

The moral of the story is that we can recreate a vector in a Hilbert space from the sequence of numbers $\left\{\left\langle\boldsymbol{x}, \boldsymbol{v}_{n}\right\rangle\right\}$. We can think of every different orthobasis for \mathcal{S} as a different transform, and the $\left\{\left\langle\boldsymbol{x}, \boldsymbol{v}_{n}\right\rangle\right\}$ as transform coefficients.

Next we will see that our notions of distance and angle also carry over to this discrete space.

Parseval's Theorem

One handy fact (and a fact we have used many times in this course already) about the Fourier transform is that it is energy preserving,

$$
\|x(t)\|_{2}^{2}=\int_{-\infty}^{\infty}|x(t)|^{2} \mathrm{~d} t=\frac{1}{2 \pi} \int_{-\infty}^{\infty}|X(j \Omega)|^{2} \mathrm{~d} \Omega=\frac{1}{2 \pi}\|X(j \Omega)\|_{2}^{2},
$$

and more generally, it preserves the L_{2} inner product:

$$
\begin{aligned}
\langle x(t), y(t)\rangle=\int_{-\infty}^{\infty} x(t) \overline{y(t)} \mathrm{d} t & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} X(j \Omega) \overline{Y(j \Omega)} \mathrm{d} \Omega \\
& =\frac{1}{2 \pi}\langle X(j \Omega), Y(j \Omega)\rangle .
\end{aligned}
$$

It is not not too hard to show that something very similar is true for any orthobasis expansion. Let \mathcal{S} be a Hilbert space with inner product $\langle\cdot, \cdot\rangle_{S}$ which induces norm $\|\cdot\|_{S}$. Let $\left\{v_{k}\right\}_{k \in \Gamma}$ be an orthobasis ${ }^{1}$ for \mathcal{S}. Then for every $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{S}$,

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle_{S}=\sum_{k \in \Gamma} \alpha_{k} \overline{\beta_{k}},
$$

where

$$
\alpha_{k}=\left\langle\boldsymbol{x}, \boldsymbol{v}_{k}\right\rangle_{S}, \quad \beta_{k}=\left\langle\boldsymbol{y}, \boldsymbol{v}_{k}\right\rangle_{S} .
$$

You can think of the $\left\{\alpha_{k}\right\}$ as the transform coefficients of \boldsymbol{x} and the $\left\{\beta_{k}\right\}$ as the transform coefficients of \boldsymbol{y}. So we have

$$
\begin{aligned}
\langle\boldsymbol{x}, \boldsymbol{y}\rangle_{S} & =\langle\boldsymbol{\alpha}, \boldsymbol{\beta}\rangle_{\ell_{2}} \\
\|\boldsymbol{x}\|_{S}^{2} & =\|\boldsymbol{\alpha}\|_{2}^{2} .
\end{aligned}
$$

[^0]\Rightarrow An orthobasis makes every Hilbert space equivalent to ℓ_{2}.
All of the geometry (lengths, angles) maps into standard Euclidean geometry in coefficient space. As you can imagine, this is a pretty useful fact.

Proof of Parseval. With $\alpha_{k}=\left\langle\boldsymbol{x}, \boldsymbol{v}_{k}\right\rangle_{S}$ and $\beta_{k}=\left\langle\boldsymbol{y}, \boldsymbol{v}_{k}\right\rangle_{S}$, we can write

$$
\boldsymbol{x}=\sum_{k \in \Gamma} \alpha_{k} \boldsymbol{v}_{k}, \quad \text { and } \quad \boldsymbol{y}=\sum_{k \in \Gamma} \beta_{k} \boldsymbol{v}_{k}
$$

and so

$$
\begin{aligned}
\langle\boldsymbol{x}, \boldsymbol{y}\rangle_{S} & =\left\langle\sum_{k \in \Gamma} \alpha_{k} \boldsymbol{v}_{k}, \sum_{\ell \in \Gamma} \beta_{\ell} \boldsymbol{v}_{\ell}\right\rangle_{S} \\
& =\sum_{k \in \Gamma} \alpha_{k}\left\langle\boldsymbol{v}_{k}, \sum_{\ell \in \Gamma} \beta_{\ell} \boldsymbol{v}_{\ell}\right\rangle_{S} \\
& =\sum_{k \in \Gamma} \sum_{\ell \in \Gamma} \alpha_{k} \overline{\beta_{\ell}}\left\langle\boldsymbol{v}_{k}, \boldsymbol{v}_{\ell}\right\rangle_{S} .
\end{aligned}
$$

For a fixed value of k, only one term in the inner sum above will be nonzero, as $\left\langle\boldsymbol{v}_{k}, \boldsymbol{v}_{\ell}\right\rangle=0$ unless $\ell=k$. Thus

$$
\langle\boldsymbol{x}, \boldsymbol{y}\rangle_{S}=\sum_{k \in \Gamma} \alpha_{k} \overline{\beta_{k}}
$$

A straightforward consequence of the result above is that distances in \mathcal{S} under the induced norm are equivalent to Euclidean $\left(\ell_{2}\right)$ distances in coefficient space:

$$
\|\boldsymbol{x}-\boldsymbol{y}\|_{S}=\|\boldsymbol{\alpha}-\boldsymbol{\beta}\|_{2}=\left(\sum_{k \in \Gamma}\left(\alpha_{k}-\beta_{k}\right)^{2}\right)^{1 / 2} .
$$

Thus changing the value of an orthobasis expansion coefficient by an amount ϵ will change the signal by an amount (as measured in $\|\cdot\|_{S}$) ϵ.

To be more precise about this, suppose \boldsymbol{x} has transform coefficients $\left\{\alpha_{k}=\left\langle\boldsymbol{x}, \boldsymbol{v}_{k}\right\rangle_{S}\right\}$. If I perturb one of them, say at location k_{0}, by setting

$$
\tilde{\alpha}_{k}=\left\{\begin{array}{ll}
\alpha_{k_{0}}+\epsilon & k=k_{0} \\
\alpha_{k} & k \neq k_{0}
\end{array},\right.
$$

and then synthesizing

$$
\tilde{\boldsymbol{x}}=\sum_{k \in \Gamma} \tilde{\alpha}_{k} \boldsymbol{v}_{k},
$$

we will have

$$
\|\boldsymbol{x}-\tilde{\boldsymbol{x}}\|_{S}=\epsilon
$$

Notice that while the error is localized to one expansion coefficient, it could effect the entire reconstruction, but its net effect will still be ϵ.

Here is another example. Suppose I sample a signal $x_{c}(t)$ which is bandlimited to π / T at a rate T, producing the sample sequence $x[n]=x_{c}(n T)$. Each of these samples gets perturbed by a (possibly different) amount $\epsilon[n]$:

$$
\tilde{x}[n]=x[n]+\epsilon[n] .
$$

We resynthesize the signal using sinc interpolation:

$$
\tilde{x}_{c}(t)=\sum_{n=-\infty}^{\infty} \tilde{x}[n] h_{T}(t-n T)
$$

and the difference between this signal and the "true" signal is

$$
\begin{aligned}
x_{c}(t)-\tilde{x}_{c}(t) & =\sum_{n=-\infty}^{\infty}(x[n]-\tilde{x}[n]) h_{T}(t-n T) \\
& =\sum_{n=-\infty}^{\infty} \sqrt{T}(x[n]-\tilde{x}[n]) h_{T}(t-n T) / \sqrt{T} .
\end{aligned}
$$

Since the $\left\{h_{T}(t-n T) / \sqrt{T}\right\}_{n \in \mathbb{Z}}$ are an orthobasis for $B_{\pi / T}$, we know

$$
\begin{aligned}
\left\|x_{c}(t)-\tilde{x}_{c}(t)\right\|_{L_{2}}^{2} & =\int\left|x_{c}(t)-\tilde{x}_{c}(t)\right|^{2} \mathrm{~d} t \\
& =\sum_{n=-\infty}^{\infty}|\sqrt{T}(x[n]-\tilde{x}[n])|^{2} \\
& =T \sum_{n=-\infty}^{\infty}|\epsilon[n]|^{2}
\end{aligned}
$$

The upshot of this is that as we change each sample, we know exactly what the net effect will be on the reconstruction error.

[^0]: ${ }^{1}$ We are using Γ to be an arbitrary index set here; it can be either finite, e.g. $\Gamma=1,2, \ldots, N$, or infinite, e.g. $\Gamma=\mathbb{Z}$.

