
Moving to infinite dimensions

So far we have described the properties of general linear vector spaces,
normed linear spaces, and inner product spaces. At each step we
require that the space be equipped with functions (i.e. a norm and
inner product) that impose ever more geometrical structure on the
vector space.

inner product spacenormed linear space
vector space

As we can see from the properties provided for an inner product
space (and the accompanying induced norm), inner product spaces
have almost all of the geometrical properties of the familiar Euclidean
space R3 (or more generally RN). In fact, in the coming sections, we
will see that any space with an inner product defined (which comes
with its induced norm) is directly analogous to Euclidean space.

To make all of this work nicely in infinite dimensions, we need a tech-
nical condition on S called completeness. Roughly, this means
that there are no points “missing” from the space. More precisely, if
we have an infinite sequence of vectors in S that get closer and closer
to one another, then they converge to something in S . Even more
precisely, we call a normed linear space complete if every Cauchy se-
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quence is a convergent sequence; that is, for every sequence x1,x2, . . . ∈
S for which

lim
min(m,n)→∞

‖xm − xn‖ = 0, will also have lim
n→∞

xn = x∗ ∈ S,

where ‖ · ‖ is the norm induced by the inner product in the case of
an inner product space.

An example of a space which is not complete is continuous, bounded
functions on [0, 1]. It is easy to come up with a sequence of functions
which are all continuous but converge to a discontinuous function.

All finite dimensional normed linear spaces and inner product spaces
are complete, as isL2([a, b]) andL2(R). The former is a basic result in
mathematical analysis, the latter is a result from the modern theory
of Lebesgue integration. In fact, every example of a normed linear
space or inner product space we have encountered so far except for
continuous, bounded functions is complete. Determining whether or
not a space is complete is far outside the scope of this course; it is
enough for us to know what this concept means.

A normed linear space which is also complete is called a Banach
space. An inner product space which is also complete is called a
Hilbert space. Note that every Hilbert space is automatically a
Banach space when equipped with the induced norm.

The Wikipedia pages on these topics are actually pretty good:
http://en.wikipedia.org/wiki/Complete_metric_space
http://en.wikipedia.org/wiki/Banach_space
http://en.wikipedia.org/wiki/Hilbert_space
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The point of asking that the space be complete is that it gives us
confidence in writing expressions like

x(t) =
∞∑
n=1

αnψn(t).

What is on the left is a sum of an infinite number of terms; the
equality above means that as we include more and more terms in
this sum, it converges to something which we call x(t). There are
different ways we might define convergence, depending on how much
of a role we want the order of terms to play in the result. But we
say that

∑∞
n=1 αnψn(t), where the ψn(t) are in a Banach (or Hilbert)

space S , is convergent if there is an x(t) such that∥∥∥∥∥x(t)−
N∑
n=1

αnψn(t)

∥∥∥∥∥→ 0 as N →∞.

If S is complete, we know that x(t) will also be in S .

This allows us to offer a more general definition of a basis that is
sensible when discussing infinite-dimensional vector spaces.

Definition: A basis of a Banach space S is a countable sequence
of vectors B = {vn} such that for any x ∈ S, there exist unique
scalars an such that

x =
∑
n

anvn.

Recall that the above equality is equivalent to ‖x−∑n anvn‖ = 0,
and hence for infinite-dimensional spaces we need to be in a Banach
space to ensure that the sum converges and that these statements
are even coherent.
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Linear approximation in a Hilbert space

Hilbert spaces will play a fundamental role in this course. Perhaps
the biggest reason is the following approximation problem:

Let S be a Hilbert space, and let T be a subspace of S . Given an
x ∈ S, what is the closest point x̂ ∈ T ?

x

T

x̂

In other words, find x̂ ∈ T that minimizes ‖x− x̂‖; i.e. given x, we
want to solve the following optimization program

minimize
y∈T

‖x− y‖, (1)

where the norm above is the one induced by the inner product. This
problem has a unique solution which is characterized by what we will
refer to as the orthogonality principle.

The orthogonality principle simply states that for the optimal ap-
proximation to x in T (i.e. the x̂ defined by (1)) the error x̂ − x
is orthogonal to T . We state this more formally in the following
theorem.
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Theorem: Let S be a Hilbert space, and let T be a finite dimen-
sional subspace1. Given an arbitrary x ∈ S,

1. there is exactly one x̂ ∈ T such that

x− x̂ ⊥ T , (2)

meaning 〈x− x̂,y〉 = 0 for all y ∈ T , and

2. this x̂ is the closest point in T to x; that is, x̂ is the unique
minimizer to (1).

Proof : We will show that the first part is true in the next section
of the notes, where we show how to explicitly calculate such an x̂.

For the second part, let x̂ be the vector which obeys

ê = x− x̂ ⊥ T .
Let y be any other vector in T , and set

e = x− y.

We will show that

‖e‖ > ‖ê‖ (i.e. that ‖x− y‖ > ‖x− x̂‖) .

Note that

‖e‖2 = ‖x− y‖2 = ‖ê− (y − x̂)‖2
= 〈ê− (y − x̂) , ê− (y − x̂)〉
= ‖ê‖2 + ‖y − x̂‖2 − 〈ê,y − x̂〉 − 〈y − x̂, ê〉.

1The same results hold when T is infinite dimensional and is closed. We
do not prove the infinite dimensional case just because it requires some
analysis of infinite sequences which, while not really that difficult, kind of
distract from the overall geometrical picture we are trying to paint here.
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Since y − x̂ ∈ T and ê ⊥ T ,

〈ê,y − x̂〉 = 0, and 〈y − x̂, ê〉 = 0,

and so
‖e‖2 = ‖ê‖2 + ‖y − x̂‖2.

Since all three quantities in the expression above are positive and

‖y − x̂‖ > 0 ⇔ y 6= x̂,

we see that
y 6= x̂ ⇔ ‖e‖ > ‖ê‖.

x

T

x̂

ê e

y

Computing the best approximation

The orthogonality principle also gives us a concrete procedure for
actually computing the optimal point x̂.

Let N be the dimension of T , and let v1, . . . ,vN be a basis for T .
We want to find coefficients a1, . . . , aN ∈ C such that

x̂ = a1v1 + a2v2 + · · · + aNvN .
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The orthogonality principle tells us that

〈x− x̂,vn〉 = 0 for n = 1, . . . , N.

This means the an must obey

〈x−
N∑
k=1

akvk , vn〉 = 0 for n = 1, . . . , N,

or moving things around,

〈x,vn〉 =
N∑
k=1

ak〈vk,vn〉 for n = 1, . . . , N.

Since x and the {vn} are given, we know both the 〈x,vn〉 and the
〈vk,vn〉. We are left with a set of N linear equations with N
unknowns:

〈v1,v1〉 〈v2,v1〉 · · · 〈vN ,v1〉
〈v1,v2〉 〈v2,v2〉 〈vN ,v2〉

... . . . ...
〈v1,vN〉 · · · 〈vN ,vN〉



a1
a2
...
aN

 =


〈x,v1〉
〈x,v2〉

...
〈x,vN〉


The matrix on the left hand side above is called the Gram matrix
or Grammian of the basis {vn}.

In more compact notation, we want to find a ∈ CN such that

Ga = b,

where bn = 〈x,vn〉 and Gk,n = 〈vn,vk〉.
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Two notes on the structure of G:

• G is guaranteed to be invertible because the {vn} are linearly
independent. We can comfortably write

a = G−1b.

• G is conjugate symmetric (“Hermitian”):

G = GH,

where GH is the conjugate transpose of G (take the transpose,
then take the complex conjugate of all the entries). This fact
has algorithmic implications when it comes time to actually
solve the system of equations.

Uniqueness

It should be clear that if 〈e,vk〉 = 0 for all of the basis vectors
v1, . . . ,vN , then 〈e,y〉 = 0 for all y ∈ T . The converse is also true:
if 〈e,y〉 6= 0 for some y ∈ T not equal to 0, then 〈e,vk〉 6= 0 for at
least one of the vk.

With the work above, this means that a necessary and sufficient
condition for 〈x− x̂,y〉 = 0 for all y ∈ T is to have

x̂ =
N∑
n=1

anvn, where a satisfies Ga = b.

Since G is square and invertible, there is exactly one such a, and
hence exactly one x̂ that obeys the condition

x− x̂ ⊥ T .
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Example: Let

T = Span

1
1
1

 ,
 1
−1
1

 , x =

−2
1
3


Find the solution to

minimize
y∈T

‖x− y‖2.

(Recall that ‖ · ‖2 in R3 is induced by the standard inner product
〈x,y〉 =

∑3
n=1 xnyn.)

Here is a plot of T and x:
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Solution: We have

G = b =

and so

G−1 =

This means that

a =

from which we synthesize the answer

x̂ =

We can also check that “the error is orthogonal to the approximation”

〈x− x̂, x̂〉 =

63

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 11:36, August 28, 2019


