
Norms

By equipping a vector space S with a norm, we are imbuing it with
a sense of length and distance. Another way to say this is that a
norm adds a layer of topological structure on top of the algebraic
structure defining a linear space.

Definition. A norm ‖ · ‖ on a vector space S is a mapping

‖ · ‖ : S → R

with the following properties for all x,y ∈ S:

1. ‖x‖ ≥ 0, and ‖x‖ = 0 ⇔ x = 0.

2. ‖x + y‖ ≤ ‖x‖ + ‖y‖ (triangle inequality)

3. ‖ax‖ = |a| · ‖x‖ for any scalar a (homogeneity)

Other related definitions:

• The length of x ∈ S is simply ‖x‖

• The distance between x and y is ‖x− y‖

• A linear vector space equipped with a norm is called a
normed linear space.
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Examples:

1. S = RN ,

‖x‖2 =

(
N∑
n=1

|xn|2
)1/2

This is called the “`2 norm”, or “standard Euclidean norm”

In R2:

x

y

‖x−y‖2 =
√

(x1 − y1)2 + (x2 − y2)2

2. S = RN

‖x‖1 =
N∑
n=1

|xn|

This is the “`1 norm” or “taxicab norm” or “Manhattan norm”

In R2:

x

y

‖x− y‖1 = |x1 − y1| + |x2 − y2|
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3. S = RN

‖x‖∞ = max
n=1,...,N

|xn|
This is the “`∞ norm” or “Chebyshev norm”

In R2:

x

y

‖x−y‖∞ = max (|x1 − y1|, |x2 − y2|)

4. S = RN

‖x‖p =

(
N∑
n=1

|xn|p
)1/p

for some 1 ≤ p <∞

This is the “`p norm”.

Draw the “`p unit balls” Bp = {x ∈ R2 : ‖x‖p ≤ 1}

p = 1 p = 2 p = 1
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5. The same definitions extend straightforwardly to infinite se-
quences:
S = sequences (discrete-time signals) x[n] indexed by the in-
tegers n ∈ Z

‖x[n]‖p =

( ∞∑
n=−∞

|x[n]|p
)1/p

It is easy to verify that the set of all discrete-time signals that
have ‖x‖p < ∞ is a (normed) linear space; we call this space
`p.

6. S = continuous-time signals on the real line

‖x(t)‖2 =

(∫ ∞
−∞
|x(t)|2 dt

)1/2

This is called the L2 norm1. In engineering, we often refer to
‖x(t)‖2

2 as the energy in the signal.

Similarly,

‖x(t)‖p =

(∫ ∞
−∞
|x(t)|p dt

)1/p

and

‖x(t)‖∞ = sup
t∈R
|x(t)|, where sup = “least upper bound”

1The L is for Lebesgue, the mathematician who formalized the modern
theory of integration in the early 1900s.
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Note that we are also using ‖ · ‖p for the discrete version of
these norms, but I do not expect this will cause any confusion.

The set of continuous-time signals that have finite Lp norm are
a normed linear space; we call this space Lp(R).

7. S = continuous-time functions on an interval [a, b]:

‖x(t)‖p =

(∫ b

a

|x(t)|p
)1/p

‖x(t)‖∞ = sup
t∈[a,b]

|x(t)|

The normed linear space of all signals on the interval [a, b] with
finite Lp norm is called Lp([a, b]).

In a normed linear space, we say that

x = y if ‖x− y‖ = 0.

For example, in L2([a, b]), say y(t) = x(t) except at one point

Then

‖x− y‖2 =

(∫ b

a

|x(t)− y(t)|2
)1/2

= 0

43

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 21:28, August 18, 2019



and so we still say that x = y. In general, if x,y ∈ Lp differ only
on a “set of measure zero”, then x = y.

(A set Γ ⊂ R has measure zero if∫
IΓ(t) dt = 0,

where

IΓ(t) =

{
1 t ∈ Γ

0 t 6∈ Γ

is an indicator function.)
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Inner products

The abstract definition of an inner product, which we will see very
shortly, is simple (and by itself is pretty boring). But it gives us just
enough mathematical structure to make sense of many important
and fundamental problems.

Consider the following motivating example in the plane R2. Let T
be a one dimensional subspace (i.e. a line through the origin). Now
suppose we are given another vector x. What is the closest point in
T to x?

x

x0

x
�

x
0

The salient feature of this point x′ is that

x− x′ ⊥ v for all v ∈ T .

So all we need to define this optimality property is the notion of
orthogonality which follows immediately from defining an inner
product. More on this later ...
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Definition: An inner product on a (real- or complex-valued)
vector space S is a mapping

〈·, ·〉 : S × S → C

that obeys2

1. 〈x,y〉 = 〈y,x〉

2. For any a, b ∈ C

〈ax + by, z〉 = a〈x, z〉 + b〈y, z〉

3. 〈x,x〉 ≥ 0 and 〈x,x〉 = 0⇔ x = 0

Standard Examples:

1. S = RN ,

〈x,y〉 =
N∑
n=1

xnyn = yTx

2. S = CN ,

〈x,y〉 =
N∑
n=1

xn yn = yHx

3. S = L2([a, b]),

〈x,y〉 =

∫ b

a

x(t)y(t) dt

2We are using a to denote the complex conjugate of a scalar a, and xH to
denote the conjugate transpose of a vector x.
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Slightly less standard examples:

1. S = RM×N (the set of M ×N matrices with real entries)

〈X,Y 〉 = trace(Y TX) =
M∑
m=1

N∑
n=1

Xm,nYm,n

(Recall that trace(X) is the sum of the entries on the diagonal
of X .) This is called the trace inner product or Frobenius
inner product or Hilbert-Schmidt inner product.

2. S = zero-mean Gaussian random variables with finite variance,

〈X, Y 〉 = E[XY ]

3. S = differentiable real-valued continuous-time signals on R,

〈x,y〉 =

∫
x(t)y(t) dt +

∫
x′(t)y′(t) dt,

where x′(t) is the derivative of x(t). This is called a Sobolev
inner product.

4. S = signals x(θ, φ) on the sphere in 3D

Difference in average temperature,
2010 vs. 1971-2000
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A natural (and valid) inner product is

〈x,y〉 =

∫ π

θ=0

∫ 2π

φ=0

x(θ, φ) y(θ, φ) sin θ dφ dθ

If we think of θ as being latitude and φ as longitude, the sin θ
can be interpreted as a weight for the size of the “circle” of
equal latitude (these get smaller as you go towards the poles).

A linear vector space equipped with an inner product is called an
inner product space.

Induced norms

A valid inner product induces a valid norm by

‖x‖ =
√
〈x,x〉

(Check this on your own as an exercise.)

It is not hard to see that in RN/CN , the standard inner product
induces the `2 norm.

Properties of induced norms

In addition to the triangle inequality,

‖x + y‖ ≤ ‖x‖ + ‖y‖,

48

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 21:28, August 18, 2019



induced norms obey some very handy inequalities (note that these
are not necessarily true for norms in general, only for norms induced
by an inner product):

1. Pythagorean Theorem

〈x,y〉 = 0 ⇒ ‖x + y‖2 = ‖x‖2 + ‖y‖2

The left-hand side above also implies that
‖x− y‖2 = ‖x‖2 + ‖y‖2.

Proof.

‖x + y‖2 = 〈x + y,x + y〉 = 〈x,x〉 + 〈x,y〉 + 〈y,x〉 + 〈y,y〉
= ‖x‖2 + 〈x,y〉 + 〈x,y〉 + ‖y‖2

= ‖x‖2 + ‖y‖2 (since 〈x,y〉 = 0)

2. Cauchy-Schwarz Inequality

|〈x,y〉| ≤ ‖x‖ ‖y‖
Equality is achieved above when (and only when) x and y are
colinear:

∃ a ∈ C such that y = ax.

Proof. Set

z = x− 〈x,y〉‖y‖2
y,

and notice that 〈z,y〉 = 0, since

〈z,y〉 = 〈x,y〉 − 〈x,y〉‖y‖2
‖y‖2 = 0.
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We can write x in terms of y and z as

x =
〈x,y〉
‖y‖2

y + z,

and since y ⊥ z,

‖x‖2 =
|〈x,y〉|2
‖y‖4

‖y‖2 + ‖z‖2

=
|〈x,y〉|2
‖y‖2

+ ‖z‖2.

Thus

|〈x,y〉|2 = ‖x‖2‖y‖2 − ‖z‖2‖y‖2 ≤ ‖x‖2‖y‖2.

We have equality above if and only if z = 0. If z = 0, then x
is co-linear with y, as

x = αy, with α =
〈x,y〉
‖y‖2

.

Conversely, if x = αy for some α ∈ C, then

z = αy − α〈y,y〉
‖y‖2

y = 0.
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3. Parallelogram Law

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

You can prove this by expanding ‖x + y‖2 = 〈x + y,x + y〉
and similarly for ‖x− y‖2.

Proof. As above, we have

‖x + y‖2 = ‖x‖2 + 〈x,y〉 + 〈x,y〉 + ‖y‖2

= ‖x‖2 + 2 Re {〈x,y〉} + ‖y‖2,

‖x− y‖2 = ‖x‖2 − 〈x,y〉 − 〈x,y〉 + ‖y‖2

= ‖x‖2 − 2 Re {〈x,y〉} + ‖y‖2,

and so

‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2.

4. Polarization Identity

Re {〈x,y〉} =
‖x + y‖2 − ‖x− y‖2

4

Proof. Using the expansions above, we quickly see that

‖x + y‖2 − ‖x− y‖2 = 4 Re {〈x,y〉} .
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Angles between vectors

In R2 (and R3), we are very familiar with the geometrical notion of
an angle between two vectors.

x

y✓

We have
〈x,y〉 = ‖x‖ ‖y‖ cos θ

Notice that this relationship depends only on norms and inner prod-
ucts. Therefore, we can extend the definition to any inner product
space.

Definition: The angle between two vectors x and y in an inner
product space is

cos θ =
〈x,y〉
‖x‖ ‖y‖,

where the norm is the one induced by the inner product.

Definition: Vectors x and y in an inner product space are
orthogonal to one another if

〈x,y〉 = 0.
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Example: (Weighted inner product)

S = R2, 〈x,y〉Q = yTQx, where Q =

[
4 0
0 1

]
so 〈x,y〉 = 4x1y1 + x2y2. What is the norm induced by this inner
product? Draw the unit ball BQ = {x ∈ R2 : ‖x‖Q = 1}.

Find a vector which is orthogonal to x =

[
1
1

]
under 〈·, ·〉Q.
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