Linear algebra has become as basic and as applicable
as calculus, and fortunately it 1s easter.

— Gilbert Strang

Linear signal spaces (vector spaces)

A wector space is simply a collection of things that obeys certain
abstract (but mostly familiar) algebraic properties. We will start by
detailing these properties.

e A vector space § is composed of a set of elements, called vec-
tors, and members of a field' F called scalars.

e The space also has rules for adding vectors and multiplying
them by scalars

— wvector addition, which we will write as ‘“4+’ combines two
vectors to get a third

— scalar multiplication, combines a scalar and a vector to
get, another vector

e The ‘+’ operation must obey the following four rules for all

x,ycdS:
L x+ty=y+=x (commutative)
2. x+(y+z)=(x+y)+= (associative)

3. There is a unique zero vector 0 such that

r+0=x VeSS

'A field is simply a set of numbers for which multiplication and addition
are defined, and distribute/associate in the same manner as the reals.
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4. For each vector & € S, there is a unique vector (called
—a) such that
x+(—x)=0

e Scalar multiplication must obey the following four rules for all
a,beFand x,y €S:

l. a(x+vy) =ax +ay
(a+b)x =ax + bx (distributive)

2. (ab)x = a(bx) (associative)

3. For the multiplicative identity of F, which we write as 1,
we have
le=x VeSS

4. For the additive identity of F, which we write as 0, we
have
Oz =0

(that’s the scalar zero on the left, and the vector zero on
the right).

e S is closed under scalar multiplication and vector addition:
r,ycS = ax+byecS, Va,berT.

This last point is really the most salient piece of algebraic struc-
ture. In light of it, we will often use the more descriptive ter-
minology linear vector space.
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Examples of vector spaces

L.

RN
ol
xr=|: where the x; are real
TN
and we use the standard rules for vector addition and scalar
multiplication

. CV, same as above, except the z; are complex

Bounded, continuous functions f(¢) on the interval |a, b] that
are real valued.

Vector addition = adding functions pointwise,

scalar multiplication = multiplying by a € R pointwise,

It should be easy to see that adding two bounded, continuous
functions gives you another bounded and continuous function.

GF(2)N
Here, the scalar field is {0, 1}, and so vectors are lists of N bits.
Addition for the field is modulo 2, so

0+0=0
O+1=14+0=1
1+1=0

For example, - o o
1 0
1 I
ol T lo| T
_1_ _O_ -

This space is super useful in information/coding theory
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Here is an example of something which is not a vector space:

5. Bounded, continuous functions f(t) on [a, b] such that

f@)] < 2.

Why is this not a linear vector space?

Linear subspaces

A (non-empty) subset 7 of S is called a linear subspace of S if
Va,beF, x,yeT = ax+byeT
Note that is has to be true that
0ec7T.
It is easy to show that 7 can be treated as a linear vector space by
itself.
Easy examples: Are these subspaces of S = R??

Yo Yo
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Which of these are subspaces?

. S=R°
T=A{x : ©,=0, x5 =0}

T={x : x,=1, z;=1}

3. § =C([0,1]) (bounded, continuous functions on [0, 1])
T = {polynomials of degree p}

4. § = continuous functions on the real line

T ={f(t) : fis bandlimited to Q}
T = {x : « has no more than 5 non-zero components}

T ={x : c'x =3}, where ¢ € R" is a fixed vector
(Recall the standard dot product ¢'x = 32, ¢[n]z[n])

n=1

T = () : £(2) = acos(2nt) + bsin(2rt) for some a,b € R}
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Linear combinations and spans
Let M = {vy,..., vy} be aset of vectors in a linear space S.
Definition: A linear combination of vectors in M is a sum of

the form
A1V1 + AUy + - - -+ anUy

for some aq,...,ay € F.

Definition: The span of M is the set of all linear combinations of
M. We write this as

Sp&l’l(./\/l) = span({vl, ce ,’UN}>

Example:
1 0
S = Rg, vV, = 1 , Vo — 1
0 0

span({v1, vs}) = (a1, 2) plane

i.e. for any x1, xs we can write

Tq 1 0
To| = a 1 —I—b 1
0 0 0

for some a,b € R
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Question: What is the span of {vy, v,, v3} for

1 0 1
V1 = 1 Vy = 1 V3 = —1 ?
0 0 0
What about if
1 0 0
V1 = 1 Vy = 1 V3 = —1 ?
0 0 1

Example:

S ={xz(t) : x(t) is periodic with period 27}
M ={" g

Then span(M) = periodic, bandlimited (to B) functions, i.e.

B
z(t)= > e
—

for some c_p,c_gi1,...,¢Co,C1,...,cp € C.
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Linear dependence

A set of vectors {w;} is said to be linearly dependent if there

exists scalars aq, ..., ay, not all = 0, such that
N
Z a, v, =0
n=1

Likewise, if " a,v, = 0 only when all the a; = 0, then {v,}’_, is
said to be linearly independent.

Example 1:
2 1 1
S = RB, V1 = 1 Vy = 1 V3 = 2
0 0 0

Find aq, a, a3 such that

a1V + a9 + asvs; =0

Note that any two of the vectors above are linearly independent:

span({vy, va,v3}) = span({wvi,vs}) = span({wvi,v3}) = span({wv,, v3})
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Example 2:
S =C([0,1))

vy = cos(27t)
vy = sin(27t)
v3 = 2cos(2nwt + 7/3)

Find aq, as, as such that

a1V1 + a9 + asv; =0

Repeat for

vy = Acos(2nt + ¢)  forsome A >0, ¢ € 0,2m).

Suppose that {vy,v,, ..., vy} are linearly dependent. Then
1
Zanvn =0 = wv,= ——Zanvn for every a;, # 0.
n Az,

Thus there is at least one vector we can remove from the set without
changing its span. This process can be repeated until we are left with
a set that is linearly independent.

36

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 21:12, August 18, 2019



Bases in finite dimensions

Definition: A basis of a finite-dimensional linear vector space S
is a set of vectors B such that

1. span(B) =S
2. B is linearly independent

The second condition ensures that all bases of S will have the same
number of elements.

The dimension of S is the number of elements required in a basis

for S.

Examples:
1. RY with
(17 [O] (0] )
0 1 0
{’Ul,’Ug,...,’UN}:< 0 , 0 R 0 >
L [0] 0] 1] )

This is the standard basis for RY.
The dimension of RY is N.

2. RY with any set of N linearly independent vectors.

3. § = {polynomials of degree at most p}.
A basis for S'is B = {1,t,¢,...,t"}.
The dimension of § is p + 1.
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4. 8§ = GF(2)? (length 3 bit vectors with mod 2 arithmetic).
A basis for S is

1 0 0
vV = 1 , Vo = 1 , V3 — 0
0 0 1

How would you write

Vo +
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