
Linear algebra has become as basic and as applicable
as calculus, and fortunately it is easier.

– Gilbert Strang

Linear signal spaces (vector spaces)

A vector space is simply a collection of things that obeys certain
abstract (but mostly familiar) algebraic properties. We will start by
detailing these properties.

• A vector space S is composed of a set of elements, called vec-
tors, and members of a field1 F called scalars.

• The space also has rules for adding vectors and multiplying
them by scalars

– vector addition, which we will write as ‘+’ combines two
vectors to get a third

– scalar multiplication, combines a scalar and a vector to
get another vector

• The ‘+’ operation must obey the following four rules for all
x,y ∈ S:

1. x + y = y + x (commutative)

2. x + (y + z) = (x + y) + z (associative)

3. There is a unique zero vector 0 such that

x + 0 = x ∀x ∈ S

1A field is simply a set of numbers for which multiplication and addition
are defined, and distribute/associate in the same manner as the reals.
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4. For each vector x ∈ S, there is a unique vector (called
−x) such that

x + (−x) = 0

• Scalar multiplication must obey the following four rules for all
a, b ∈ F and x,y ∈ S:

1. a(x + y) = ax + ay
(a + b)x = ax + bx (distributive)

2. (ab)x = a(bx) (associative)

3. For the multiplicative identity of F, which we write as 1,
we have

1x = x ∀x ∈ S

4. For the additive identity of F, which we write as 0, we
have

0x = 0

(that’s the scalar zero on the left, and the vector zero on
the right).

• S is closed under scalar multiplication and vector addition:

x,y ∈ S ⇒ ax + by ∈ S, ∀a, b ∈ F.

This last point is really the most salient piece of algebraic struc-
ture. In light of it, we will often use the more descriptive ter-
minology linear vector space.
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Examples of vector spaces

1. RN

x =

x1
...
xN

 where the xi are real

and we use the standard rules for vector addition and scalar
multiplication

2. CN , same as above, except the xi are complex

3. Bounded, continuous functions f (t) on the interval [a, b] that
are real valued.
Vector addition = adding functions pointwise,
scalar multiplication = multiplying by a ∈ R pointwise,
It should be easy to see that adding two bounded, continuous
functions gives you another bounded and continuous function.

4. GF (2)N

Here, the scalar field is {0, 1}, and so vectors are lists of N bits.
Addition for the field is modulo 2, so

0 + 0 = 0

0 + 1 = 1 + 0 = 1

1 + 1 = 0

For example, 
1
1
0
1

 +


0
1
0
0

 =




This space is super useful in information/coding theory
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Here is an example of something which is not a vector space:

5. Bounded, continuous functions f (t) on [a, b] such that

|f (t)| ≤ 2.

Why is this not a linear vector space?

Linear subspaces

A (non-empty) subset T of S is called a linear subspace of S if

∀ a, b ∈ F, x,y ∈ T ⇒ ax + by ∈ T

Note that is has to be true that

0 ∈ T .

It is easy to show that T can be treated as a linear vector space by
itself.

Easy examples: Are these subspaces of S = R2?
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Which of these are subspaces?

1. S = R5

T = {x : x4 = 0, x5 = 0}

2. S = R5

T = {x : x4 = 1, x5 = 1}

3. S = C([0, 1]) (bounded, continuous functions on [0, 1])
T = {polynomials of degree p}

4. S = continuous functions on the real line
T = {f (t) : f is bandlimited to Ω}

5. S = RN

T = {x : x has no more than 5 non-zero components}

6. S = RN

T = {x : cTx = 3}, where c ∈ RN is a fixed vector
(Recall the standard dot product cTx =

∑N
n=1 c[n]x[n])

7. S = C([0, 1])
T = {f (t) : f (t) = a cos(2πt)+b sin(2πt) for some a, b ∈ R}
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Linear combinations and spans

LetM = {v1, . . . ,vN} be a set of vectors in a linear space S .

Definition: A linear combination of vectors in M is a sum of
the form

a1v1 + a2v2 + · · · + aNvN

for some a1, . . . , aN ∈ F.

Definition: The span ofM is the set of all linear combinations of
M. We write this as

span(M) = span({v1, . . . ,vN})

Example:

S = R3, v1 =

1
1
0

 , v2 =

0
1
0



span({v1,v2}) = (x1, x2) plane

i.e. for any x1, x2 we can writex1

x2

0

 = a

1
1
0

 + b

0
1
0


for some a, b ∈ R
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Question: What is the span of {v1,v2,v3} for

v1 =

1
1
0

 v2 =

0
1
0

 v3 =

 1
−1
0

 ?

What about if

v1 =

1
1
0

 v2 =

0
1
0

 v3 =

 0
−1
1

 ?

Example:

S = {x(t) : x(t) is periodic with period 2π}
M = {ejkt}Bk=−B

Then span(M) = periodic, bandlimited (to B) functions, i.e.

x(t) =
B∑

k=−B

ck e
jkt

for some c−B, c−B+1, . . . , c0, c1, . . . , cB ∈ C.
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Linear dependence

A set of vectors {vj}Nj=1 is said to be linearly dependent if there
exists scalars a1, . . . , aN , not all = 0, such that

N∑
n=1

an vn = 0

Likewise, if
∑

n anvn = 0 only when all the aj = 0, then {vn}Nn=1 is
said to be linearly independent.

Example 1:

S = R3, v1 =

2
1
0

 v2 =

1
1
0

 v3 =

1
2
0


Find a1, a2, a3 such that

a1v1 + a2v2 + a3v3 = 0

Note that any two of the vectors above are linearly independent:

span({v1,v2,v3}) = span({v1,v2}) = span({v1,v3}) = span({v2,v3})
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Example 2:

S = C([0, 1])

v1 = cos(2πt)

v2 = sin(2πt)

v3 = 2 cos(2πt + π/3)

Find a1, a2, a3 such that

a1v1 + a2v2 + a3v3 = 0

Repeat for

v3 = A cos(2πt + φ) for some A > 0, φ ∈ [0, 2π).

Suppose that {v1,v2, . . . ,vN} are linearly dependent. Then∑
n

an vn = 0 ⇒ vk = − 1

ak

∑
n 6=k

anvn for every ak 6= 0.

Thus there is at least one vector we can remove from the set without
changing its span. This process can be repeated until we are left with
a set that is linearly independent.
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Bases in finite dimensions

Definition: A basis of a finite-dimensional linear vector space S
is a set of vectors B such that

1. span(B) = S
2. B is linearly independent

The second condition ensures that all bases of S will have the same
number of elements.

The dimension of S is the number of elements required in a basis
for S .

Examples:

1. RN with

{v1,v2, . . . ,vN} =




1
0
0
...
0

 ,


0
1
0
...
0

 , · · · ,


0
0
0
...
1




This is the standard basis for RN .
The dimension of RN is N .

2. RN with any set of N linearly independent vectors.

3. S = {polynomials of degree at most p}.
A basis for S is B = {1, t, t2, . . . , tp}.
The dimension of S is p + 1.
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4. S = GF (2)3 (length 3 bit vectors with mod 2 arithmetic).
A basis for S is

v1 =

1
1
0

 , v2 =

0
1
0

 , v3 =

0
0
1

 .
How would you write1

0
0

 = v1 + v2 + v3 ?
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