Linear algebra has become as basic and as applicable as calculus, and fortunately it is easier.

- Gilbert Strang


## Linear signal spaces (vector spaces)

A vector space is simply a collection of things that obeys certain abstract (but mostly familiar) algebraic properties. We will start by detailing these properties.

- A vector space $\mathcal{S}$ is composed of a set of elements, called vectors, and members of a field ${ }^{1} \mathbb{F}$ called scalars.
- The space also has rules for adding vectors and multiplying them by scalars
- vector addition, which we will write as ' + ' combines two vectors to get a third
- scalar multiplication, combines a scalar and a vector to get another vector
- The ' + ' operation must obey the following four rules for all $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{S}$ :

1. $\boldsymbol{x}+\boldsymbol{y}=\boldsymbol{y}+\boldsymbol{x}$
(commutative)
2. $\boldsymbol{x}+(\boldsymbol{y}+\boldsymbol{z})=(\boldsymbol{x}+\boldsymbol{y})+\boldsymbol{z}$
(associative)
3. There is a unique zero vector $\mathbf{0}$ such that

$$
\boldsymbol{x}+\mathbf{0}=\boldsymbol{x} \quad \forall \boldsymbol{x} \in \mathcal{S}
$$

[^0]4. For each vector $\boldsymbol{x} \in \mathcal{S}$, there is a unique vector (called $-\boldsymbol{x})$ such that
$$
\boldsymbol{x}+(-\boldsymbol{x})=\mathbf{0}
$$

- Scalar multiplication must obey the following four rules for all $a, b \in \mathbb{F}$ and $\boldsymbol{x}, \boldsymbol{y} \in \mathcal{S}$ :

1. $a(\boldsymbol{x}+\boldsymbol{y})=a \boldsymbol{x}+a \boldsymbol{y}$ $(a+b) \boldsymbol{x}=a \boldsymbol{x}+b \boldsymbol{x}$
2. $(a b) \boldsymbol{x}=a(b \boldsymbol{x})$ (distributive) (associative)
3. For the multiplicative identity of $\mathbb{F}$, which we write as 1 , we have

$$
1 \boldsymbol{x}=\boldsymbol{x} \quad \forall \boldsymbol{x} \in \mathcal{S}
$$

4. For the additive identity of $\mathbb{F}$, which we write as 0 , we have

$$
0 \boldsymbol{x}=\mathbf{0}
$$

(that's the scalar zero on the left, and the vector zero on the right).

- $\mathcal{S}$ is closed under scalar multiplication and vector addition:

$$
\boldsymbol{x}, \boldsymbol{y} \in \mathcal{S} \Rightarrow a \boldsymbol{x}+b \boldsymbol{y} \in \mathcal{S}, \quad \forall a, b \in \mathbb{F} .
$$

This last point is really the most salient piece of algebraic structure. In light of it, we will often use the more descriptive terminology linear vector space.

## Examples of vector spaces

1. $\mathbb{R}^{N}$

$$
\boldsymbol{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{N}
\end{array}\right] \quad \text { where the } x_{i} \text { are real }
$$

and we use the standard rules for vector addition and scalar multiplication
2. $\mathbb{C}^{N}$, same as above, except the $x_{i}$ are complex
3. Bounded, continuous functions $f(t)$ on the interval $[a, b]$ that are real valued.
Vector addition $=$ adding functions pointwise, scalar multiplication $=$ multiplying by $a \in \mathbb{R}$ pointwise, It should be easy to see that adding two bounded, continuous functions gives you another bounded and continuous function.
4. $G F(2)^{N}$

Here, the scalar field is $\{0,1\}$, and so vectors are lists of $N$ bits. Addition for the field is modulo 2 , so

$$
\begin{aligned}
& 0+0=0 \\
& 0+1=1+0=1 \\
& 1+1=0
\end{aligned}
$$

For example,

$$
\left[\begin{array}{l}
1 \\
1 \\
0 \\
1
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]=[]
$$

This space is super useful in information/coding theory

Here is an example of something which is not a vector space:
5. Bounded, continuous functions $f(t)$ on $[a, b]$ such that

$$
|f(t)| \leq 2
$$

Why is this not a linear vector space?

## Linear subspaces

A (non-empty) subset $\mathcal{T}$ of $\mathcal{S}$ is called a linear subspace of $\mathcal{S}$ if

$$
\forall a, b \in \mathbb{F}, \quad \boldsymbol{x}, \boldsymbol{y} \in \mathcal{T} \Rightarrow a \boldsymbol{x}+b \boldsymbol{y} \in \mathcal{T}
$$

Note that is has to be true that

$$
\mathbf{0} \in \mathcal{T}
$$

It is easy to show that $\mathcal{T}$ can be treated as a linear vector space by itself.

Easy examples: Are these subspaces of $\mathcal{S}=\mathbb{R}^{2}$ ?



Which of these are subspaces?

1. $\mathcal{S}=\mathbb{R}^{5}$
$\mathcal{T}=\left\{\boldsymbol{x}: x_{4}=0, x_{5}=0\right\}$
2. $\mathcal{S}=\mathbb{R}^{5}$
$\mathcal{T}=\left\{\boldsymbol{x}: x_{4}=1, x_{5}=1\right\}$
3. $\mathcal{S}=\mathcal{C}([0,1])$ (bounded, continuous functions on $[0,1])$
$\mathcal{T}=\{$ polynomials of degree $p\}$
4. $\mathcal{S}=$ continuous functions on the real line
$\mathcal{T}=\{f(t): f$ is bandlimited to $\Omega\}$
5. $\mathcal{S}=\mathbb{R}^{N}$
$\mathcal{T}=\{\boldsymbol{x}: \boldsymbol{x}$ has no more than 5 non-zero components $\}$
6. $\mathcal{S}=\mathbb{R}^{N}$
$\mathcal{T}=\left\{\boldsymbol{x}: \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}=3\right\}$, where $\boldsymbol{c} \in \mathbb{R}^{N}$ is a fixed vector (Recall the standard dot product $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}=\sum_{n=1}^{N} c[n] x[n]$ )
7. $\mathcal{S}=\mathcal{C}([0,1])$
$\mathcal{T}=\{f(t): f(t)=a \cos (2 \pi t)+b \sin (2 \pi t)$ for some $a, b \in \mathbb{R}\}$

## Linear combinations and spans

Let $\mathcal{M}=\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{N}\right\}$ be a set of vectors in a linear space $\mathcal{S}$.

Definition: A linear combination of vectors in $\mathcal{M}$ is a sum of the form

$$
a_{1} \boldsymbol{v}_{1}+a_{2} \boldsymbol{v}_{2}+\cdots+a_{N} \boldsymbol{v}_{N}
$$

for some $a_{1}, \ldots, a_{N} \in \mathbb{F}$.
Definition: The span of $\mathcal{M}$ is the set of all linear combinations of $\mathcal{M}$. We write this as

$$
\operatorname{span}(\mathcal{M})=\operatorname{span}\left(\left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{N}\right\}\right)
$$

Example:

$$
\boldsymbol{\mathcal { S }}=\mathbb{R}^{3}, \quad \boldsymbol{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad \boldsymbol{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$



$$
\operatorname{span}\left(\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}\right)=\left(x_{1}, x_{2}\right) \text { plane }
$$

i.e. for any $x_{1}, x_{2}$ we can write

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
0
\end{array}\right]=a\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+b\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

for some $a, b \in \mathbb{R}$

Question: What is the span of $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}$ for

$$
\boldsymbol{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \quad \boldsymbol{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad \boldsymbol{v}_{3}=\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]
$$

What about if

$$
\boldsymbol{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \quad \boldsymbol{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad \boldsymbol{v}_{3}=\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right]
$$

?

## Example:

$$
\begin{aligned}
\mathcal{S} & =\{x(t): x(t) \text { is periodic with period } 2 \pi\} \\
\mathcal{M} & =\left\{e^{j k t}\right\}_{k=-B}^{B}
\end{aligned}
$$

Then $\operatorname{span}(\mathcal{M})=$ periodic, bandlimited (to $B)$ functions, i.e.

$$
x(t)=\sum_{k=-B}^{B} c_{k} e^{j k t}
$$

for some $c_{-B}, c_{-B+1}, \ldots, c_{0}, c_{1}, \ldots, c_{B} \in \mathbb{C}$.

## Linear dependence

A set of vectors $\left\{\boldsymbol{v}_{j}\right\}_{j=1}^{N}$ is said to be linearly dependent if there exists scalars $a_{1}, \ldots, a_{N}$, not all $=0$, such that

$$
\sum_{n=1}^{N} a_{n} \boldsymbol{v}_{n}=\mathbf{0}
$$

Likewise, if $\sum_{n} a_{n} \boldsymbol{v}_{n}=\mathbf{0}$ only when all the $a_{j}=0$, then $\left\{\boldsymbol{v}_{n}\right\}_{n=1}^{N}$ is said to be linearly independent.

Example 1:

$$
\boldsymbol{S}=\mathbb{R}^{3}, \quad \boldsymbol{v}_{1}=\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right] \quad \boldsymbol{v}_{2}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \quad \boldsymbol{v}_{3}=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]
$$

Find $a_{1}, a_{2}, a_{3}$ such that

$$
a_{1} \boldsymbol{v}_{1}+a_{2} \boldsymbol{v}_{2}+a_{3} \boldsymbol{v}_{3}=\mathbf{0}
$$

Note that any two of the vectors above are linearly independent:
$\operatorname{span}\left(\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}\right)=\operatorname{span}\left(\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}\right\}\right)=\operatorname{span}\left(\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{3}\right\}\right)=\operatorname{span}\left(\left\{\boldsymbol{v}_{2}, \boldsymbol{v}_{3}\right\}\right)$

## Example 2:

$$
\begin{aligned}
\mathcal{S} & =\mathcal{C}([0,1]) \\
\boldsymbol{v}_{1} & =\cos (2 \pi t) \\
\boldsymbol{v}_{2} & =\sin (2 \pi t) \\
\boldsymbol{v}_{3} & =2 \cos (2 \pi t+\pi / 3)
\end{aligned}
$$

Find $a_{1}, a_{2}, a_{3}$ such that

$$
a_{1} \boldsymbol{v}_{1}+a_{2} \boldsymbol{v}_{2}+a_{3} \boldsymbol{v}_{3}=\mathbf{0}
$$

Repeat for

$$
\boldsymbol{v}_{3}=A \cos (2 \pi t+\phi) \quad \text { for some } A>0, \quad \phi \in[0,2 \pi)
$$

Suppose that $\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{N}\right\}$ are linearly dependent. Then

$$
\sum_{n} a_{n} \boldsymbol{v}_{n}=\mathbf{0} \Rightarrow \boldsymbol{v}_{k}=-\frac{1}{a_{k}} \sum_{n \neq k} a_{n} \boldsymbol{v}_{n} \quad \text { for every } a_{k} \neq 0
$$

Thus there is at least one vector we can remove from the set without changing its span. This process can be repeated until we are left with a set that is linearly independent.

## Bases in finite dimensions

Definition: A basis of a finite-dimensional linear vector space $\mathcal{S}$ is a set of vectors $\mathcal{B}$ such that

1. $\operatorname{span}(\mathcal{B})=\mathcal{S}$
2. $\mathcal{B}$ is linearly independent

The second condition ensures that all bases of $\mathcal{S}$ will have the same number of elements.

The dimension of $\mathcal{S}$ is the number of elements required in a basis for $\mathcal{S}$.

## Examples:

1. $\mathbb{R}^{N}$ with

$$
\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{N}\right\}=\left\{\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right],\left[\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right], \cdots,\left[\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
1
\end{array}\right]\right\}
$$

This is the standard basis for $\mathbb{R}^{N}$.
The dimension of $\mathbb{R}^{N}$ is $N$.
2. $\mathbb{R}^{N}$ with any set of $N$ linearly independent vectors.
3. $\mathcal{S}=\{$ polynomials of degree at most $p\}$.

A basis for $\mathcal{S}$ is $\mathcal{B}=\left\{1, t, t^{2}, \ldots, t^{p}\right\}$.
The dimension of $\mathcal{S}$ is $p+1$.
4. $\mathcal{S}=G F(2)^{3}$ (length 3 bit vectors with mod 2 arithmetic). A basis for $\mathcal{S}$ is

$$
\boldsymbol{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad \boldsymbol{v}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad \boldsymbol{v}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

How would you write

$$
\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\ldots \boldsymbol{v}_{1}+\ldots \boldsymbol{v}_{2}+\ldots \boldsymbol{v}_{3} ?
$$


[^0]:    ${ }^{1} \mathrm{~A}$ field is simply a set of numbers for which multiplication and addition are defined, and distribute/associate in the same manner as the reals.

