
A first look at basis expansions

In the previous section we looked at the sampling theorem from the
point of view of frequency-domain transformations. This is a very
good way to understand it in the context of classical signal process-
ing. We can, however, think of it in another way: as an orthobasis
expansion in a Hilbert space. This is a powerful viewpoint, as it
will allow us to generalize what it means to discretize a continuous
time signal. It will also give us a unified framework for treating all
different types of signals (continuous, discrete, infinite length, time-
limited, etc.)1

We will start with some concrete examples, and then develop the
general framework. Essentially, we will be concerned with extending
and abstracting the key concepts from linear algebra:

• linear subspaces

• norms

• bases / change of bases

• inner products / orthogonality / projections

• linear operators (matrices in finite dimensions)

• eigenvalues / singular values

1Good sources for the material in the rest of Section I include:

• Moon and Stirling, Chapter 2

• G. Strang, “Linear Algebra and its Applications”

• N. Young, “An Introduction to Hilbert Space”

• Naylor and Sell, “Linear Operator Theory in Engineering and Sci-
ence”
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Example: Fourier series and bandlimited signals

We have already seen one of the canonical examples of a basis ex-
pansion. The Fourier series representation allows us to represent any
periodic function as a superposition of harmonic sinusoids.

The sampling theorem, which as we argued earlier is mathematically
equivalent to Fourier series, allows us to represent any bandlimited
function as a superposition of suitably shifted sinc functions.

Example: Taylor series

It is almost too obvious that anymth order polynomial can be written
as a super position of the m + 1 functions 1, t, t2, . . . , tm. (Indeed,
this is pretty much the definition of polynomial.) For example:

t3 − 17
12
t2 + 5

8
t− 1

12
1 · t3 −17

12
t2

0 0.2 0.4 0.6 0.8 1
−0.1

−0.05

0

0.05

0.1

0.15

=

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

+

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

5
8
t − 1

12

+

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

+

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1

17

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 21:11, August 18, 2019



More generally, well-defined “infinite degree” polynomials are called
analytic functions2. For these functions, there is a systematic
way of computing the expansion coefficients to represent x(t) on
some interval (say [−1/2, 1/2] again),

x(t) =
∞∑
k=0

αk · tk, where αk =
x(k)(0)

k!
,

where x(k)(t) is the kth derivative of x(t). You may recall this as the
Taylor series expansion. For instance, on the interval [−1/2, 1/2], we
can write

et =
∞∑
k=0

αk · tk, where αk =
1

k!
,

log(1 + t) =
∞∑
k=0

αk · tk where αk =
(−1)k+1

k
,

sin(2πt) =
∞∑
k=0

αk · tk where αk =

{
(−1)(k+3)/2(2π)k+1

(k+1)!
k odd

0 k even

Here are the three examples above with the series truncated to the
first six terms:

2More technically, a function x(t) is called analytic on an interval [a, b] if
for any t0 ∈ [a, b], the infinite sum

∑
k≥0 ak(t − t0)k converges to x(t) for

some choice of {ak}.
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et ≈
∑6
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k!
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The exp and log examples are pretty much spot-on with only six
terms, while the sin example is still suffering a little on the edges.

It is important to realize that Taylor series is not the only way to
build up a function as a sum of polynomials, and despite its conve-
nience, it has a few unsatisfying properties (e.g. there are infinitely
differentiable functions whose Taylor series converges, but does not
equal the original function anywhere). Moreover, it is unclear how
to use Taylor series for signals that only have a small number of
derivatives.
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Example: Lagrange polynomials

The sampling theorem from the last set of notes showed that we can
build-up a bandlimited signal from a (possibly infinite) superposition
of sinc functions; for example, if x(t) is bandlimited to B = π, then

x(t) =
∞∑

k=−∞

αkg(t− k), g(t) =
sin(πt)

πt
,

and the expansion coefficient are simply samples of x(t): αk = x(k).
We are able to reproduce x(t) in this example because it adheres to
known model: its Fourier transform is zero outside of [−π, π].

It might be that we have a different model for the continuous-time
signal x(t). One alternative model might be that x(t) is a polynomial.
In fact, given a finite number M+1 of samples of x(t), there is always
an M th order polynomial that passes through all of them — another
way of saying this is that an M th order polynomial can be reproduced
from M + 1 samples. If x(t) is an M th order polynomial, then using
samples x(0), x(T ), . . . , x(MT ), we can write

x(t) =
M∑
k=0

αk pk(t)

where αk = x(kT ), and

pk(t) =
∏

0≤m≤M
m 6=k

t−mT
(k −m)T

.

It should be clear from the expression above that each pk(t) is a
different M th order polynomial, and

pk(nT ) =

{
1, n = k

0, n 6= k.
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Given the samples x(kT ), moving to continuous-time signal x(t) is
called Lagrange interpolation. Here are the 6 basis functions
pk(t) for M = 5:
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One problem with Lagrange polynomials is that they are extremely
unstable outside of the interval [0,M ] — they diverge very quickly
to either ∞ or −∞ (as all polynomials must do).
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Example: Splines

A more stable way to interpolate between a sequence of discrete
points is by using a polynomial spline. Given a sequence of lo-
cations t1, . . . , tK and function values at those locations vt1, . . . , vtK ,
the `th order polynomial spline is the function x(t) which obeys:

x(tk) = vtk, for k = 1, . . . , K,

and
x(t) is an `th order polynomial between the tk.

For ` ≥ 1, the spline function is continuous and will have ` − 1
derivatives which are continuous at the tk.

For example, suppose we have data points at the integers

t1 = 1, t2 = 2, t3 = 3, t4 = 4

with values
v1 = 2, v2 = 3, v3 = 1, v4 = −1

and values of zeros at the other integers. This is illustrated below.
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The zero-th order interpolation is:

−6 −4 −2 0 2 4 6 8 10
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

The linear interpolation is:
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The quadratic interpolation is:
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Any `th order polynomial spline can be written as a superposition of
B-spline functions (the ‘B’ is for basis!).

The piecewise constant function above can be written as

x(t) =
4∑

k=1

αk b0(t− k), b0(t) =

{
1 −1/2 ≤ t < 1/2

0 else

for α1 = 2, α2 = 3, α3 = 1, α4 = −1. The piecewise linear function
above can be written as

x(t) =
4∑

k=1

αk b1(t− k), b1(t) =


t + 1 −1 ≤ t ≤ 0

1− t 0 ≤ t ≤ 1

0 else

for α1 = 2, α2 = 3, α3 = 1, α4 = −1. In this case, the building
blocks b1(t) are ‘hat’ functions:

b1(t− k), k = −6, . . . , 10
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For spline expansions using an order greater than 1, the expansion
coefficients αk will not be equal to the sample values. However, given
a set of M samples values, the αk that interpolate these samples can
be found by solving a system of equations.
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Notice that we can generate b1 by convolving b0 with itself:

b1(t) = (b0 ∗ b0)(t).

The expansion for the piecewise quadratic spline above is a little
more complicated:

x(t) =
∞∑

k=−∞

αk b2(t−k), b2(t) =


(t + 3/2)2/2 −3/2 ≤ t ≤ −1/2

−t2 + 3/4 −1/2 ≤ t ≤ 1/2

(t− 3/2)2/2 1/2 ≤ t ≤ 3/2

0 |t| ≥ 3/2

where the αk are all non-zero. The expansion has an infinite number
of terms because the basis functions overlap on the integers:
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Just as before, we can generate the basis function b2(t) from the lower
order ones:

b2(t) = (b1 ∗ b0)(t) = (b0 ∗ b0 ∗ b0)(t).

In general, any `th order polynomial spline x(t) is uniquely repre-
sented by a list of numbers {αk, k ∈ Z}, which correspond to the
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weights needed to re-synthesize the spline from the building blocks
{b`(t− k), k ∈ Z}:

x(t) =
∞∑

k=−∞

αkb`(t− k), b`(t) = b0(t) ∗ · · · ∗ b0(t)︸ ︷︷ ︸
` times

If we are given an `th order spline x(t), there is a systematic way
to compute the corresponding αk (and hence gives us another repro-
ducing formula). Without getting too much into the details at this
point, there is a complementary function b̃`(t) such that

αk =

∫ ∞

−∞
x(t)b̃`(t− k) dt.

In the quadratic case ` = 2, this function looks kind of like a sinc:
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We know how to compute these complementary b̃`(t), but they are
not easy to write down as nice expressions.
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Bases and discretization

All of the examples above have a common theme: we take a signal in
a certain class (bandlimited, zero outside of [0, T ], polynomial spline)
and represent it using a discrete list of numbers {αk, k ∈ Z}.

These numbers represent weights used to build up the signal out
of a set of pre-determined building blocks (“basis functions”). This
framework gives us a systematic way to manipulate continuous time
signals by operating on discrete vectors. This allows us to unleash
the power of linear algebra.

It often times also gives us a straightforward way to simply or com-
press signals. As you can see from the sawtooth Fourier series exam-
ple, although it technically takes an infinity of sinusoids to build up
the signals, we can get away with 50 if we are willing to suffer some
loss. We will see some more examples of this later in this section.

In this set of notes, we have just gotten our first taste of basis ex-
pansions. What we will do next is develop a systematic method for
taking a signal and breaking it down into a superposition of basis
functions. We will also discuss how to optimally approximate a func-
tion using a fixed number of basis functions — this simple idea has
an incredible number of applications.

To do these things correctly, we need to first build up some mathe-
matical machinery so we can avoid talking in hazy terms. We start
in the next section with precise (but abstract) definitions of linear
vector space, norm, and inner product.
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