I. Signal Discretization using
Basis Decompositions
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We will start by reviewing one of the foundational results of digital
signal processing: the Shannon-Nyquist sampling theorem. We will
use this result as a first example of how continuous-time signals can be
systematically discretized (translated into a discrete list of numbers).

The Shannon-Nyquist sampling theorem

Sampling turns a continuous-time signal z.(f) into a discrete list of
numbers simply by evaluating it at equally spaced points:
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(C' — D=continuous-to-discrete.)

The constant T' is the sampling interval
(the amount of time that passes between each sample).

This is a very common practice, and there exists very sophisticated
hardware that implements it. Examples:

e Texas Instruments makes an ADC, the 12DL3200, that takes
6.4 billion samples per second (T = 0.16 nanoseconds) at a
(reported) resolution of 12 bits. Cost: &~ $3000.

e Another ADC from TI, the TIADS1261, takes 40,000 samples
per second (T = 25 microseconds) at a (reported) resolution of
24 bits. Cost: ~ $11
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Questions:
1. When can you reconstruct x.(t) perfectly from its samples?
2. How do you do it?

Answers:
1. When z.(t) is bandlimited, i.e. when

X.(jQ) =0 forall |Q>n/T

where X.(j€2) is the continuous time Fourier transform (CTFT)
of x.(t):

o0

X.(jQ) = / r.(t)e ™ dt.

— 00

In other words, the sampling rate (= 1/T in Hz, or 27 /T in
rad/sec) must be larger than twice the maximum frequency
present in the signal.

This is known as the Nyquist criterion.

2. We reconstruct the continuous time signal from the discrete
sample sequence using sinc interpolation:

D —C

converter

f

T

x[n] — > 2,-(1)

(D — C' = discrete-to-continuous.)
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Mathematically, we can write the output as:

sin(m(t —nT)/T)
n(t —nT)/T

zn] gr(t —nT')

_ ~
n=-—00 shifts of the sinc

Recall that:

sin(nt/T) & _ T, |9 <Z
t) = & Gr(4Q) = ’ 7
AG7 (i)
T
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Single sample:
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Notice that the sinc function is exactly zero at the other sample
locations.

Multiple samples:
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In between samples, multiple sincs combine to yield a smooth signal.
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The Fundamental Theorem of DSP
If z.(t) is bandlimited to B (X.(j2) = 0 for |Q2] > B), then it can
be perfectly reconstructed from samples spaced T' < 7 /B apart:

r()= Y aln]grlt - ),
where (/T
z[n| = z.(nT), gr(t) = /T

1. Thisis known as the Shannon-Nyquist sampling theorem

2. It is the backbone of DSP — it essentially says that we can
process z.(t) by processing its samples

3. The samples are a discrete list of numbers, and hence can be
processed digitally on a computer, giving us tremendous flex-
ibility.

4. The two equations above are our first example of a
reproducing formula, which shows how a signal can be
written as a discrete combination of linear functionals of that
signal (samples, in this case) weighted against a set of fixed
“basis” signals. This is a central theme in this first section of
the course.

D

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 21:13, August 18, 2019




Frequency domain interpretation

Like many things, it is illuminating to look at sampling and recon-
struction in the frequency domain.

First, we will relate the discrete time Fourier transform (DTFT)
of z[n] to the CTFT of x.(t):

o

X(e*) = Z z[n] e " = i T (nT) e 7"

n=—oo n=—oo
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Recall the Poisson Summation Formula:

o

Z e = 2 i d(w — 27k)

n=-—o0o k=—00

where
d(w) = “Dirac delta function”.

Plugging this in, we have

X () /XO;Q ZéQT w — 2mk) dS)

_Z / X, ijOOQT w — 21k) dQ)
25 (7))
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There are essentially two things going on here:
1. X.(jQ2) — %XC (]%)

dilates the spectrum

203X (47) — 7 50 Xe U (5 + 7))
makes this dilation periodic (w/ period 27)

Graphically, this is what happens for B < 7 /T
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Aliasing

If T > /B, there is trouble:
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What is another signal with the same samples as x.(t)?
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Reconstruction

The reconstructed signal is

and so

X, (592) = Z z[n] G (5Q) e/

n—=——oo
(0. ¢]

=Gr(jQ) - ) aln]e™

n=—oo

= Gr(jQ) X (™)

Again, there are two steps:
1. X(e™) — X(e/97)

dilates the (periodic) spectrum

9 X(ejQT) N GT(jQ) . X(ejQT)

restricts the spectrum to its fundamental period
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Graphically, this is what happens:
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A little more on the X (/) — X (e’%T) step ...

What we are doing is taking a discrete sequence x|n| (with DTFT
X (e)) and turning it into a function x,(t) (with CTFT X,(jQ) =
X (e7%T)) of a continuous time variable.

Set N
T,(t) = Z x[n] §(t — nT)
x[n] xq(t)
L1 T
123 T 93T
Then

X,(jQ) = /_ Z ™ lnld(t — nT) e dt

— Zx[n] /_Z 5(t —nT)e ™ dt

_ Zx[n] e—jQTn _ X(ejQT)

11

Georgia Tech ECE 6250 Fall 2019; Notes by J. Romberg and M. Davenport. Last updated 21:13, August 18, 2019



So the D — C' converter converts the sample sequence into a spike
train and then low pass filters it. We can interpret what is inside
this block as:

rln) ——— 1 Ha(G®) e 2 (t)
T

where
T, |9 <7Z,
0, otherwise.
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Anti-aliasing filters

Suppose the spectrum of z.(t) looks like

3 Xe()
Q
W/ L\ o
1 I >
B« T B
T T
Compare the outputs of these two systems:
C—D g D—C
ze(t) converter | converter z1(t)
t t
T T
, ; | C—D | D—C
ze(t) Ha(592) | converter | converter 22(t)
i i
T T

where

Which is closer to x.(t)?

That is, which is smaller:

/|xc(t) —m@Pdt o /\xc(t) — B dt 7
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Relationship to Fourier series

Recall that any periodic signal can be written as a (possibly infinite)
superposition of harmonic sinusoids. If z(t) has period T, we
can write

CIZ’(t) _ Z . €j27rk:t/T’ (1)

k=—o00
1 T/2 .
where g = —/ x(t) e 2Tt (2)

T J 7/
(The integral above can be computed over any interval of length
T'.) The two equations above are another example of a reproducing
formula — (2) shows how to systematically take a signal and map it
into a discrete list of numbers, while (1) shows how to take that list
of numbers and synthesize the signal.

sawtooth wave partial FS sum, |k| <3 k| < 50

Equivalently, we can think of the Fourier series as building up a func-
tion that is time-limited to [—7/2,T/2]. That every (‘“reasonable”)
function can be represented this way is a deep result in mathematics,
which we will talk a little more about later. But it is mathemat-
ically equivalent to the sampling theorem, we just switch
the roles of time and frequency:.
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To see this, suppose that x(t) is zero outside of [—=T"/2,T/2], so (1)
is building it up only inside this interval. Then its Fourier transform
is - |

X(jQ) = / w(t) e ™ dt.

~T/2

Notice that the Fourier series coefficients ay, in (2) are samples of the
Fourier transform spaced 27 /T apart and scaled by 1/T"

Now we can write the Fourier transform as a combination of samples
(07

T/2 0
X(]Q) :/ Z a 6]27Tkt/T€ 7Ot dt

/2,2
— Z Oék;/ 27T]<2/T Q dt
k=—00 T/2
i 2T sin(QT'/2 — k)
= o
= QT - 2nk
i 21k
— Z X (]T> g2w/T(Q—27Tk/T),
k=—00

where as before gor/7(€2) is a sinc function. This is exactly the same
reproducing formula we had for the Shannon-Nyquist sampling the-
orem. Here it says that the Fourier transform of a signal which is
time-limited to 7" can be reconstructed from samples taken 27 /T in
frequency.
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