
ECE 6250, Fall 2019

Homework #4

Due Wednesday September 18, at the beginning of class

As stated in the syllabus, unauthorized use of previous semester course materials is
strictly prohibited in this course.

1. Using your class notes, prepare a 1-2 paragraph summary of what we talked about in class
in the last week. I do not want just a bulleted list of topics, I want you to use complete
sentences and establish context (Why is what we have learned relevant? How does it connect
with other things you have learned here or in other classes?). The more insight you give, the
better.

2. The vector space L2([0, 1]2) is the space of signals of two variables, x(s, t) with s, t ∈ [0, 1]
such that ∫ 1

0

∫ 1

0
|x(s, t)|2 ds dt < ∞.

Let {ψk(t), k ≥ 0} be an orthobasis for L2([0, 1]). Define

vk,`(s, t) = ψk(s)ψ`(t), k, ` ≥ 0.

Show that {vk,`(s, t), k, ` ≥ 0} are an orthobasis for L2([0, 1]2).

3. Let E be the space of signals on [−1, 1] that are even:

x(t) ∈ E ⇔ x(t) = x(−t), t ∈ [−1, 1],

and let O be the space of signals on [−1, 1] that are odd:

x(t) ∈ O ⇔ x(t) = −x(−t), t ∈ [−1, 1].

(a) Given an arbitrary x(t) ∈ L2([−1, 1]) what is the closest even function to x? That is,
solve

min
y∈E

‖x− y‖22.

A good way to do this is to use the orthogonality principle — we know that for the
optimal ŷ ∈ E

〈x− ŷ, z〉 = 0 for all z ∈ E .

You might consider filling in the blanks in the following line of reasoning:

〈x− ŷ, z〉 =

∫ 1

−1
[x(t)− ŷ(t)]z(t) dt

=

∫ 1

0
[x(t)− ŷ(t)]z(t) + · · · dt

= · · ·
= 0 for all z ∈ E when ŷ(t) = · · · .
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(b) Given an arbitrary x(t) ∈ L2([−1, 1]), solve

min
y∈O

‖x− y‖22.

(c) Let {φk(t), k ≥ 0} be an orthobasis for L2([0, 1]). How can we use this orthobasis
on [0, 1] to construct an orthobasis {φek(t), k ≥ 0} for E? What about an orthobasis
{φok(t), k ≥ 0} for O? Is {φek(t), k ≥ 0} ∪ {φok(t), k ≥ 0} an orthobasis for all of
L2([−1, 1])? Why or why not?

4. In this problem, we will develop the computational framework for approximating a continuous-
time signal on [0, 1] using scaled and shifted version of the classic bell-curve bump:

φ(t) = e−t
2
.

Fix an integer N > 0 and define φk(t) as

φk(t) = φ

(
t− (k − 1/2)/N

1/N

)
= φ (Nt− k + 1/2)

for k = 1, 2, . . . , N . The {φk(t)} are a basis for the subspace

TN = span {φk(t)}Nk=1 .

(a) For a fixed value of N , we can plot all of the φk(t) on the same set of axes in MATLAB
using:

phi = @(z) exp(-z.^2);

t = linspace(0, 1, 1000);

figure(1); clf

hold on

for kk = 1:N

plot(t, phi(N*t - kk + 1/2))

end

Do this for N = 10 and N = 25 and turn in your plots.

(b) Since {φk(t)} is a basis for TN , we can write any y(t) ∈ TN as

y(t) =
N∑
k=1

akφk(t)

for some set of coefficients a1, . . . , aN ∈ RN . If these coefficients are stacked in an
N -vector a in MATLAB, we can plot y(t) using

t = linspace(0,1,1000);

y = zeros(size(t));

for jj = 1:N

y = y + a(jj)*phi(N*t - jj + 1/2);

end

plot(t, y)
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Do this for N = 4, and a1 = 1, a2 = −1, a3 = 1, a4 = −1 and turn in your plot.

(c) Define the continuous-time signal x(t) on [0, 1] as

x(t) =


4t 0 ≤ t < 1/4

−4t+ 2 1/4 ≤ t < 1/2

− sin(20πt) 1/2 ≤ t ≤ 1

.

Write MATLAB code that finds the closest point x̂(t) in TN to x(t) for any fixed N . By
“closest point”, we mean that x̂(t) is the solution to

min
y∈TN

‖x(t)− y(t)‖L2([0,1]).

Turn in your code and four plots; one of which has x(t) and x̂(t) plotted on the same
set of axes for N = 5, and then repeat for N = 10, 20, and 50.
Hint: You can create a function pointer for x(t) using

x = @(z) (z < 1/4).*(4*z) + (z>=1/4).*(z<1/2).*(-4*z+2) - (z>=1/2).*sin(20*pi*z);

and then calculate the continuous-time inner product 〈x, φk〉 with

x_phik = @(z) x(z).*phi(N*z - jj + 1/2);

integral(x_phik, 0, 1)

You can use similar code to calculate the entries of the Gram matrix 〈φj , φk〉. (There is
actually a not-that-hard way to calculate the 〈φj , φk〉 analytically that you can derive if
you are feeling industrious — just think about what happens when you convolve a bump
with itself.)

5. You want to design an analog filter that has impulse response

h(t) =


0, t < 0

1, 0 ≤ t < 1

0, t ≥ 1.

The components you have on hand only allow you implement impulse responses of the form

g(t) =

{
0, t < 0,

α1e
−t + α2te

−t + · · ·+ αN t
N−1e−t, t ≥ 0,

where the α1, . . . , αN can be controlled through judicious pole-zero placement. Design optimal
filters (i.e. calculate optimal {αk}) for N = 2, 5, 10. By optimal, we mean∫ ∞

0
|h(t)− ĥ(t)|2 dt

is minimized. Note: you do not need to remember what I mean by pole-zero placement to
solve this problem.

Plot your results on the same axes, along with h(t). Turn in any code you use to solve this
problem.
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