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So far we have focused exclusively on unconstrained optimization
problems. In such a setting, our goal is typically clear: find a point
where the gradient (or subgradient) is equal to zero. All of the al-
gorithms we have explored so far were different strategies for finding
such a point. Once we add constraints, however, things get a bit
more complicated. In particular, there may no longer be any points
that satisfy the constraints we are imposing where the gradient van-
ishes. Showing that we have found an optimal point will now involve
a more complicated relationship between the gradient of the function
we are minimizing together with the constraints.

In these notes we will look at a specific class of constrained optimiza-
tion problems of the form

minimize
x∈RN

f (x) gm(x) ≤ 0, m = 1, . . . ,M. (1)

Here, we represent the constraints as functions g1, . . . , gM , which by
convention we define so that we are always imposing gm(x) ≤ 0.
Note that if we had a constraint of the form h(x) = 0 we could write
this as h(x) ≤ 0 combined with −h(x) ≤ 0, so equality constraints
can also be handled, although we will encounter these less frequently
in this course.1

While some of what we will say actually applies to the case where
the gm are nonconvex, we will mostly only be interested in the case
where the gm are convex functions.

1In practice, you would want to handle equality constraints more explicitly,
but focusing only on inequality constraints will make the exposition quite
a bit cleaner without really sacrificing any intuition.

1

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 23:33, November 16, 2020



An important consideration in constrained optimization problems is
the concept of feasibility. A vector x is feasible if it satisfies the
constraints of (1). Specifically, a feasible x must satisfy gm(x) ≤ 0
for m = 1, . . . ,M . It is not a given that any feasible x exists. For
instance, I might demand that

∑N
n=1 xn > 1 and also

∑N
n=1 xn < −1.

Clearly, no x that simultaneously satisfies both of these constraints
can exist. In our discussion below, we will assume that the feasible
set

C = {x ∈ RN : gm(x) ≤ 0 m = 1, . . . ,M, }
is non-empty.

The Lagrangian

The Lagrangian takes the constraints in the program above and
integrates them into the objective function. Specifically, the La-
grangian L : RN × RM → R associated with this optimization pro-
gram is

L(x,λ) := f (x) +
M∑

m=1

λmgm(x).

For reasons that will become clearer below, the x above are referred
to as primal variables, and the λ as either dual variables or
Lagrange multipliers.

The Lagrangian allows us to transform the constrained optimization
problem in (1) into an unconstrained one. Specifically, consider the
problem given by

minimize
x∈RN

f (x) +
M∑

m=1

λmgm(x). (2)
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To get some intuition, suppose that we set the λ1, . . . , λM to be very
large (positive) numbers. In this case, violating any of the constraints
(allowing gm(x) > 0) will result in a very large penalty being added
to the objective function, so that by setting the corresponding λm

to be large we will eventually guarantee that the resulting solution
will satisfy the desired constraints. The problem here is that large
values of λm not only avoid the setting where gm(x) > 0, but actually
encourages gm(x) � 0 (since we can potentially benefit by not just
satisfying the constraints but by exceeding them by a large margin).

This raises a natural question: can we set λ so that the solution
to the unconstrained problem (2) is the same as the constrained
problem (1)? Here we will provide an answer in the case where the
objective function f and the constraints g1, . . . , gM are both convex
and differentiable.

Suppose that x? is a solution to the constrained problem (1). If we
want x? to be a solution to (2), then we need

∇xL(x?,λ) = ∇xf (x?) +
M∑

m=1

λm∇xgm(x?) = 0. (3)

If we knew x? already, finding a λ that would make the unconstrained
and constrained problems equivalent (meaning that they both have
the same solution x?) would just amount to finding a λ such that (3)
holds. Unfortunately, this is not particularly useful since x? is what
we are trying to find to begin with.

To see how we might compute a λ that makes the unconstrained and
constrained problems equivalent, we will need to take a brief detour
to discuss the notion of duality.
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Lagrangian duality

The Lagrange dual function

We can think of the unconstrained optimization problem (2) as ac-
tually representing a family of different optimization problems (de-
pending on λ). For any fixed λ, imagine solving (2) and computing
the minimal value of the objective function – we can think of this as
actually defining a function that maps λ ∈ RM to R. We call this
the Lagrange dual function d(λ), which is defined as

d(λ) = min
x∈RN

(
f (x) +

M∑
m=1

λmgm(x)

)
.

Note that, using a result from a previous homework, since the dual is
the minimum of a family of affine functions in λ, the Lagrange dual
function always concave.2

A key fact about the dual function is that it can provide a lower
bound on the optimal value of the original program. In the discussion
below, we assume throughout that λ ≥ 0, meaning that λm ≥ 0 for
all m, but can otherwise be arbitrary. The main claim is that if f ?

is the optimal value for (1), then we have

d(λ) ≤ f ?.

This is very easy to show. Specifically, for any feasible point x′, we

2While it is not really significant in the context of this class, since we are
focusing on convex optimization problems, a remarkable fact is that the
dual is concave regardless of whether or not the gm are convex. This can
be very useful when dealing with nonconvex problems, but we will not
explore this here.
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must have gm(x′) ≤ 0 for all m and hence

M∑
m=1

λmgm(x′) ≤ 0.

From this we have that

L(x′,λ) ≤ f (x′),

meaning
d(λ) = min

x∈RN
L(x,λ) ≤ L(x′,λ) ≤ f (x′).

Since this holds for all feasible x′, including the minimizer of (1), we
have d(λ) ≤ f ?.

The (Lagrange) dual problem

Given that d(λ) provides a lower bound on f ?, if you wanted to get
an idea of what f ? looks like (for example, to see if you are close to
convergence), it is natural to see how large you can make this lower
bound. This gives rise to what we call the dual problem of (1):

maximize
λ∈RM

d(λ) subject to λ ≥ 0. (4)

The dual optimal value d? is

d? = max
λ≥0

d(λ) = max
λ≥0

min
x∈RN
L(x,λ).

Since d(λ) ≤ f ?, we know that

d? ≤ f ?.
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The quantity f ? − d? is called the duality gap. If f ? = d?, then
we say that (1) and (4) exhibit strong duality.

We will soon discuss when strong duality holds, but first, why is it
important? Suppose that x? is a solution to the original constrained
problem (1) – which we will call the primal problem to distinguish
it from the dual problem – and suppose that λ? is a solution to the
dual problem (4). It turns out that if we have strong duality, then λ?

is exactly what we need to make x? the solution to the unconstrained
problem (2).

To see why, note that

f (x?) = d(λ?)

= min
x∈RN

(
f (x) +

M∑
m=1

λ?
mgm(x)

)

≤ f (x?) +
M∑

m=1

λ?
mgm(x?)

≤ f (x?). (5)

where the last inequality follows from the fact that we must have
λ?
m ≥ 0 and gm(x?) ≤ 0. Looking at this entire chain of inequalities,

where the first and last term are both f (x?), means that

f (x?) = min
x∈RN
L(x,λ?) = L(x?,λ?).

In words, the solution to the primal problem x? is also a minimizer
of L(x,λ?).
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Example

Consider the optimization problem

minimize
x∈RN

〈x, c〉 subject to Ax ≤ b.

This is called a linear program (since the objective function is
just a linear function of x). The Lagrangian is

L(x,λ) = 〈x, c〉 +
M∑

m=1

λm (〈x,am〉 − bm)

= cTx− λTb + λTAx.

This is a linear function of x. Note that it is unbounded below unless

c +ATλ = 0.

Thus

g(λ) = min
x

(
cTx− λTb + λTAx

)
=

{
−〈λ, b〉, c +ATλ = 0

−∞, otherwise.

So the Lagrange dual program is

maximize
λ∈RM

−〈λ, b〉 subject to ATλ = −c

λ ≥ 0.

Note that the dual is another linear program.

7

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 23:33, November 16, 2020



Strong duality and the KKT conditions

So when does strong duality hold? The answer can be pretty compli-
cated and depends on the structure of the constraints. There are a
variety of so-called “constraint qualifications” that serve as sufficient
conditions to guarantee strong duality.

Probably the simplest and most widely applicable is known as Slater’s
condition, which is essentially that the gm are affine inequality con-
straints (i.e., they can be expressed as Ax ≤ b), and that there is
an x that is strictly feasible for the remaining constraints (i.e., an x
such that for all the gm which are not affine we have gm(x) < 0).
Actually proving that this condition implies strong duality is some-
what involved. We will not worry too much about this, in all of the
problems that we will encounter in this course, strong duality will
hold.

Above we argued that when strong duality holds, if x? is a solution to
the primal problem and λ? is a solution to the dual problem, then x?

is also a minimizer of L(x,λ?), or equivalently, that the condition (3)
holds for λ = λ?, i.e.,

∇xf (x?) +
M∑

m=1

λ?
m∇xgm(x?) = 0.

We can also say something else about x? and λ? from the analysis
on the previous page. Specifically, the final inequality in (5) implies
that

M∑
m=1

λ?
mgm(x?) = 0,

but since each term in this sum has to be less than or equal to zero,
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this actually implies that

λ?
mgm(x?) = 0, m = 1, . . . ,M.

If we combine these facts with the fact that if x? and λ? must be
feasible in order to be solutions to the primal/dual problems, we
arrive at a set of conditions that solutions x? and λ? to the primal
and dual problems must satisfy. These are known as the Karush-
Kuhn-Tucker (KKT) conditions.

KKT
The KKT conditions for for an x ∈ RN and λ ∈ RM are

gm(x) ≤ 0, m = 1, . . . ,M, (K1)

λm ≥ 0, m = 1, . . . ,M, (K2)

λmgm(x) = 0, m = 1, . . . ,M, (K3)

∇xf (x) +
M∑

m=1

λm∇xgm(x) = 0. (K4)

We have already shown (if strong duality holds) that if x? and λ? are
primal/dual optimal, then x?,λ? must satisfy the KKT conditions.
It is also the case that if you can find x?,λ? that obey the KKT
conditions, then you necessarily have strong duality and x? and λ?

are primal/dual optimal. This is easy to show. Note that if KKT4
holds,

∇xL(x?,λ?) = 0,

meaning that x? is a minimizer of L(x,λ?), i.e.,

L(x?,λ?) ≤ L(x,λ?),
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thus

d(λ?) = L(x?,λ?,ν?)

= f (x?) +
M∑

m=1

λ?
mgm(x?)

= f (x?), (by KKT3),

and we have strong duality. Since the dual d(λ) always provides a
lower bound to the primal f (x) (for any feasible x and λ), if x?

and λ? satisfy d(λ?) = f (x?), we know that λ? and x? are optimal
since we clearly cannot further decrease f to be smaller than d(λ?)
or increase d to be larger than f (x?).

The KKT conditions are a very useful tool in optimization. As we will
soon see, one algorithmic approach to constrained optimization is to
simply find x? and λ? satisfying these conditions using an iterative
method. The KKT conditions also allow us to easily “translate”
a solution to the primal problem into a solution to the dual, or a
solution to the dual problem into a solution to the primal. This can
be useful because sometimes, for example, the dual might be much
easier to solve than the primal.
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