Nonsmooth optimization

Most of the theory and algorithms that we have explored for convex
optimization have assumed that the functions involved are differen-
tiable — that is, smooth.

This is not always the case in interesting applications. In fact, non-
smooth functions can arise quite naturally in applications. We have
already encountered some nonsmooth convex functions like the hinge
loss max(a'x + b,0), the ¢; norm, and the £,, norm.

Fortunately, the theory for nonsmooth optimization is not too dif-
ferent than for smooth optimization. We really just need one new
concept: that of a subgradient.

Subgradients

If you look back through the notes so far, you will see that the vast
majority of the time we use the gradient of a convex function, it is
in the context of the inequality

fly) > flx)+ Vo f(x) (y —),
for any @,y € RY.

This is a very special property of convex functions, and it led to all
kinds of beautiful results.

When convex f is not differentiable at a point &, we can more or less
reproduce the entire theory using subgradients. A subgradient of
f at @ is a vector g such that

fly) > flx)+g' (y —x),

45

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 13:14, November 5, 2020

for all y € R. Unlike gradients for smooth functions, there can be
more than one subgradient of a nonsmooth function at a point. We
call the collection of subgradients the subdifferential at x:

Of () =1{g : fly) > f(x)+g'(y —) forally € R"}.

Facts:

1. If f is convex and differentiable at @, then the subdifferential
contains exactly one vector: the gradient,

Of(x) = {Vaf(z)}.

2. If f is convex, then the subdifferential is non-empty for all
x € RY.

Note that for non-convex f, these two points do not hold in general.
The gradient at a point is not necessarily a subgradient and there
can also be points where neither the gradient nor subgradient exist.

Example: the ¢, norm

Consider the function

flx) =z
The ¢, norm is not differentiable at any x that has at least one coordi-
nate equal to zero. We will see that optimization problems involving
the ¢, norm very often have solutions that are sparse, meaning that
they have many zeros. This is a big problem — the nonsmoothness is
kicking in at exactly the points we are interested in.

What does the subdifferential d||x||; look like in such a case? To
see, recall that by definition, if a vector u € 0||x||,, at the point @,
then we must have

Iyl = Nzl + w'(y —) (1)

46

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 13:14, November 5, 2020

for all y € RY. To understand what this means in terms of @, it
is useful to introduce the notation I'(x) to denote the set of indexes
where @ is non-zero:

[x)={n : x, # 0}.

Using this, we can re-write the right-hand side of (1) as

N N
e[l +ul(y —2) =D [aa] + D walyn —)
n=1 n=1

N
= Z |z, — w2, + Z UnYn.-
n=1

nel’

Note that if
1 if x,, > 0,

-1 ifz, <0,

u, = sign(z,) = {
then u,x, = |z,|. Thus, if u, = sign(z,) for all n € T, we have

Z 2, — upx, = Z lz,| — |z,| = 0.

nel’ nel’

Thus, if we set u,, = sign(z,,) for all n € ', then (1) reduces to

Iyl = u'y.

As long as |u,| < 1 for all n, then this will hold. Thus, if a vector u
satisfies

u, = sign(z,) ifnel,
u,| <1 ifné¢l,

then w € 9||x||;. It is not hard to show that for any w that violates
these conditions, we can construct a y such that (1) is violated, and
thus this is a complete description of all vectors in u € 0||x||;.

A7

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 13:14, November 5, 2020

Optimality conditions for unconstrained optimization

(New and Improved!!)

With the right definition in place, it is very easy to re-derive the cen-
tral mathematical results in this course for general' convex functions.

Let f(x) be a general convex function. Then &* is a solution to
the unconstrained problem

minitnize f(x)

if and only if
0cof(xr).

Proof of this statement is so easy you could do it in your sleep.
Suppose 0 € df(x*). Then

fly) = f(@) +0'(y —)
= f(z)
for all y € RY. Thus @* is optimal. Likewise, if f(y) > f(x*)
Yy

>
for all y € RY, then of course it must also be true that f(y) >
f(x*) + 0" (y —) for all y, and so 0 € Of(x*).

"Meaning not necessarily differentiable.

48

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 13:14, November 5, 2020

The subgradient method

The subgradient method is the nonsmooth version of gradient de-
scent. The basic algorithm is straightforward, consisting of the same

core iteration
xF D) — k) akd(k), (2)

but where now d® is (the negative of) any subgradient at £*) i.e.,
d* e —af(x™). Of course, there could be many choices for d* at
every step, and the progress you make at that iteration could very
dramatically with this choice. Making this determination, though, is
often very difficult, and whether or not it can even be done it very
problem dependent. Thus the analytical results for the subgradient
method just assume we have any subgradient at a particular step.

With the right choice of step sizes {ay }, some simple analysis (which
we will just gloss over here) shows that the subgradient method con-
verges. The convergence rate, though, is very slow. This is also
evidenced in most practical applications of this method: it can take
many iterations on even a medium-sized problem to arrive at a solu-
tion that is even close to optimal.

To be concrete, we are considering the unconstrained program

minimize f(a). (3)

RN

Along with f being convex, we will assume that it has at least one
minimizer and that f is Lipschitz:

[f(x) = fly)] < Gllz—yl..

The results below used pre-determined step sizes. One big difference
in the nonsmooth setting is that with any pre-determined step size,

49

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 13:14, November 5, 2020

since we are picking d™ to be any subgradient, we cannot guarantee
that the iteration (2) will always decrease f(x) at every step. As an
example, even at a solution &* to (3), we might have d" £ 0, and
so any pre-determined oy, # 0 would result in f(xz®+Y) > f(x®).
Thus, we will keep track of the best value we have up to the current
iteration with

) _ (i)
fbest Orgzglk f(CC)

Using a similar analytical approach to the one we took in analyzing
gradient descent for M-smooth functions, one can show that

@ —arf+ S o]l d"Y ||2
222 1aZ

fbest f — (4>

We can now specialize this result to general step-size strategies.

Fixed step size. Suppose that a;, = a > 0 for all k. Then (4)

becomes || ||2 -
A Qa
fbest f = 2
2k 2

Note that in this case, no matter how small we choose «, the sub-
gradient algorithm is not guaranteed to converge. This
is, in fact, standard in practice as well. The problem is that, unlike
gradients for smooth functions, the subgradients do not have to van-
ish as we approach the solution. Even at the solution, there can be
subgradients that are large.

Decreasing step size. The result above suggests that we might
want to decrease the step size as k increases, so we can get rid of
this constant offset term. To make the terms in (4) work out, we let

50

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 13:14, November 5, 2020

oy — 0, but not too fast. This can be a delicate tradeoff, but a good
balance is to set ay = a/vk. Then for large k

k k:
Zozi ~ (a+1)Vk, and Z o ~ o’logk,
i=1

1=1

and so

(0) _ |2 2
. o | x5 4 Const - aG logk.

~ (a+1)VE vk

This is something like O(1/v/k) convergence. This means that if we
want to guarantee fi¥ — f* < e we need k = O(1/€?) iterations.
This is pretty slow, but unfortunately it is possible to show this rate
of convergence cannot, in general, be improved upon.

k
o — f

Example. Consider the “/; approximation problem”

minimize ||Ax — bl|;.
xeRN

We have already looked at the subdifferential of ||x||;. Specifically,
we showed that w is a subgradient of ||x||; at @ if it satisfies

u, = sign(z,) if z, #0,
uy) < 1 if 7, = 0.

Using what is essentially the same argument we can derive the sub-
differential form f(x) = ||Ax — b||;. First consider a vector z that
satisfies

zm = sign(a:x —b,) ifa'x—b, #0,
2] <1 ifa'x — b, = 0.

51

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 13:14, November 5, 2020

Now consider the vector u = AT z. Note that

u'(y—z) =2 Ay — z)
=2 (Ay —b+b— Ax)
=2'(Ay — b) — 2" (Axz — b)
=2 (Ay —b) — | Az — b];
< |[Ay — b|l; — || Az — b]|..

Rearranging this shows that w is a subgradient of || Aa —b||;. Using
this we can construct a subgradient at each step ®.

Below we illustrate the performance of this approach for a randomly
generated example with A € R0 and b € R For three
different sizes of fixed step length, o = 0.1,0.01,0.001, we make
quick progress at the beginning, but then saturate, just as the theory
predicts:

(f(x™) —)/ * (8 =/ f
T =1 T =01
— 0.01 || [— 0.01 ||

’ —0.001|| 1p-! —0.001 |
10_1 F] E

E E 1072} E
1072+ ; i

_3| |
107 T

100

0 20 40 . 60 80 100 0 1000 2000 3000
k

Here is an example using two different decreasing step size strategies:

op = .01/VE and oy, = 01/k.

52

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 13:14, November 5, 2020

(FB =)/ f

‘—0.‘01/‘\/E
— 0.01/k ||

0 1000 2000 . 3000 4000 5000

As you can see, even though the theoretical worst case bound makes
a stepsize of ~ 1/ V'k look better, in this particular case, a stepsize
~ 1/k actually performs better.

Qualitatively, the takeaways for the subgradient method are:

L.

[t is a natural extension of the gradient descent formulation

2. In general, it does not converge for fixed stepsizes.

3. If the stepsizes decrease, you can guarantee convergence.
4.
5

. Convergence rates in practice are also very slow, but depend a

Theoretical convergence rates are slow.

lot on the particular example.

53

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 13:14, November 5, 2020

Proximal algorithms

The subgradient algorithm is one generalization of gradient descent.
It is simple, but the convergence is typically very slow (and it does
not even converge in general for a fixed stepsize). The essential reason
for this was that there are plenty of subgradients that are large near
and even at the solution.

One way to deal with this is to add a smooth regularization term.
Specifically, it is easy to see that if * is a minimizer of f(a), then
it is also the minimizer of
minimize f(x) + 0|z — =*||3,

xRN
where 0 > 0. Since || — «*||3 = 0 for @ = x* and is strictly
positive for all other @, this will not change the solution to the original
optimization problem. Note that now the problem is strictly convex
and the additional quadratic term ensures that the only subgradient
that exists at the solution is the zero vector, which addresses the
main drawback of subgradient methods. The only challenge is that
it requires us to already know the solution x*.

We can turn this into an actual algorithm by adopting an iterative ap-
proach. The proximal algorithm or proximal point method
uses the following iteration:

1

") = arg min (f(a:) + —||e — a:(k)]@) : (5)
weRN 20y

When f is convex, f(x)+ «||x — z||3 is strictly convex for all &« > 0
and z € R, so the mapping from £ to £*+Y is well-defined. We
will use the “prox operator” to denote this mapping:

1

_ - e 12
prox, () = argain (@) + ol = 213)

b4

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 13:14, November 5, 2020

At this point, you would be forgiven for wondering what we are really
doing here. We have taken an unconstrained problem and turned it
into a series of unconstrained problems. For this to make sense, the
program in (5) would have to be easier to solve for some reason. This
can certainly be the case, and we will see an example soon. One way
to think about the additional ﬁ |z —x®]||2 is as a reqularizer whose
influence naturally disappears as we approach the solution, even for
a fixed “step size” a;, = a. Computationally, the smoothed problem
can be much easier to solve.

To gain an alternative perspective on this, note that if f is differen-
tiable, then

1
£+ — are min (fla) + —||z — m<’<>u§>

0

0=V.f(x k+1)+1

a(a:“““) — ™), (6)

If we rearrange this we obtain the update rule
w(k‘—i—l) . Oéva;f((k+1))

This almost looks like gradient descent, but we are evaluating the
gradient at £**V rather than at .

Note that we assumed above that f has a gradient only for illustra-
tion; we can still use proximal algorithms when f is not differentiable.

59

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 13:14, November 5, 2020

Least squares

Let’s look at a concrete example. Suppose we want to solve the
standard least squares problem

minimize ||y — Aw|;

When A has full column rank, we know that the solution is given
by Z1s = (A" A)'A"y. However, we also know that when A' A
is not well-conditioned, this inverse can be unstable to compute, and
iterative descent methods (gradient descent and conjugate gradients)
can take many iterations to converge.

Consider the proximal point iteration (with fixed ay, = «) for solving
this problem:

, 1 1
2" = arg min <§||y — Azx|]} + %Hm — a:“”HS) .

RN

Here we have the closed form solution

) = (ATA + 01 (ATy +6x™), 5= !

a

=W 4 (ATA + 1) AT (y — Ax™),

Now each step is equivalent to solving a least-squares problem, but
this problem can be made well-conditioned by choosing § (i.e., «)
appropriately. The iterations above will converge to Zpg for any
value of a; as we decrease « (increase 9), the number of iterations to
get within a certain accuracy of g increases, but the least-squares
problems involved are all very well conditioned. For a very small,
we are back at gradient descent (with stepsize «).

This is actually a well-known technique in numerical linear algebra
called iterative refinement.

56

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 13:14, November 5, 2020

Convergence

We have yet to show that the iteration

1 = prox, (')

T
actually converges to a minimizer of f. We will now see that the
convergence guarantees (at least in terms of number of iterations)
are much nicer than they are for the subgradient method.

We will skip the details, but we can bound the number of steps it
takes for the proximal point method to achieve a certain accuracy,
just as we have for the other unconstrained minimization algorithms
that we have encountered. Under technical conditions on f (to ensure
that a minimizer &* exists and that the prox function is well-defined),
it is possible to show that the iterations &** = prox,, f(a:(k)) obey

|lz® — @13

2 Zf:l Q;

where f* = f(x*). From here we can see that

flx®) -+ < for all k > 1, (7)

w=a = f@®)-f=0(1/k),

that is, we are guaranteed to get to a point with &*) such that
f(x®) — f* < ein O(1/e) iterations.

In looking at (7), it seems that we can make the convergence as fast
as we want by making the a;, very large. This is true, but remember
that each step itself involves solving an optimization program, and
the cost of solving this program might rely critically on the ay. As
oy gets large, we are effectively solving the original program itself.

57

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 13:14, November 5, 2020

Accelerated proximal points algorithms

We can “accelerate” the proximal point method in the same way we
accelerated gradient descent: by adding “feedback” from previous
iterations.

The essential iteration is as follows:

z = prox, ("),
2 = prox, (was) + B(a® — w(kz—n)) |

where the o are fixed or chosen using a line search and, as with
Nesterov's method, we can take the (5, to be

E—1

K]

So we are adding a little bit of momentum to *) before we compute
the prox mapping. This makes sense intuitively, and we have seen
that this type of idea leads to real gains in standard gradient descent.
The step sizes) are derived using a similar approach to in Nesterov’s
method. This is non-trivial and we will omit it here.

The convergence results for the accelerated proximal method say that
the iteration converges if the oy, are chosen such that >, \/a; — o0.
For constant step size, we have O(1/k?) convergence, which is a
significant improvement over the standard proximal point method.

Moreover, this acceleration comes at practically zero additional com-
putational cost. All we have to do is store an extra iterate in memory.

53

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 13:14, November 5, 2020

