
Accelerated first-order methods

There are small changes we can make to gradient descent that can
dramatically improve its performance, both in theory and in prac-
tice. We talk about two of these here: the heavy ball method, and
Nesterov’s “optimal algorithm”.

The heavy ball method

The heavy ball method, introduced by Polyak in 1964, introduces
an additional term term into the gradient step:

x(k+1) = x(k) − αk∇xf (x(k)) + βk(x
(k) − x(k−1)).

The second term above adds a little bit of the last step x(k)−x(k−1)

direction into the new step direction x(k+1) − x(k). We can think of
this as a mixture of updating our step direction but also biasing in
the direction that we were already going, much like a (heavy) ball
would as it rolls down a surface and builds momentum. This method
is also referred to as gradient descent with momentum.

In the last set of notes we discussed the convergence of gradient
descent when f is both M -smooth and strongly convex. A key result
was that for a fixed step size of α = 1/M , we have

‖x(k) − x?‖2 ≤
(
κ− 1

κ + 1

)k
‖x(0) − x?‖2,

where κ = M/m.

For the heavy ball method, we have a similar analysis that ends in a
better result. Specifically, one can show that taking

α =
4

(
√
M −√m)2

, β =

√
M −√m√
M +

√
m
,

30

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 13:53, October 18, 2020

yields a guarantee of the form

‖x(k) − x?‖2 .

(√
κ− 1√
κ + 1

)k
‖x(0) − x?‖2.

The notation “.” indicates that we are ignoring a (small) constant
to highlight the dependence on k and κ. This can be translated into
a guarantee that says

‖x(k) − x?‖2
‖x(0) − x?‖2

≤ ε when k &
√
κ log(1/ε).

The difference with gradient descent can be significant. When κ =
102, we are asking for ≈ 100 log(1/ε) iterations for gradient descent,
as compared with ≈ 10 log(1/ε) from the heavy ball method.

Nesterov’s “optimal” method

In the case where f is strictly convex, there are examples that show
that the convergence rate of the heavy ball method can’t be improved
in general. For non-strictly convex f , the story is more complicated.

Recall that we also had a convergence result for gradient descent in
the case where we only have that f is M -smooth. Specifically, again
setting α = 1/M , we showed that

f (x(k))− f (x?) .
M

k
‖x(0) − x?‖22.

Thus, to reduce the error by a factor of ε requires

k & 1/ε

iterations.

31

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 13:53, October 18, 2020

In 1983, Yuri Nesterov proposed a slight variation on the heavy ball
method that can improve on this theory, and often works better
in practice.1 Specifically, note that the heavy ball method can be
represented via the iteration:

p(k) = βk
(
x(k) − x(k−1)

)
x(k+1) = x(k) − αk∇xf (x(k)) + p(k),

where we start with p(0) = 0. Nesterov’s method makes a subtle,
but significant, change to this iteration:

p(k) = βk
(
x(k) − x(k−1)

)
x(k+1) = x(k) − αk∇xf (x(k) + p(k)) + p(k).

Notice that this is the same as heavy ball except that there is also a
momentum term inside the gradient expression. With this iteration,
using a very similar analysis to what we did with gradient descent,
you can show that by carefully selecting βk we can guarantee that

f (x(k))− f (x?) .
L

k2
‖x(0) − x?‖22.

This means that we can reduce the error by a factor of ε in

k & 1/
√
ε,

iterations. When ε ∼ 10−4, this is much, much better than the 1/ε
we had for gradient descent.

1Note that this method remained to a large extent unknown in the wider
community until the 2004 publication (in English) of his book Introductory
Lectures on Convex Optimization.

32

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 13:53, October 18, 2020

Nesterov’s method is called “optimal” because it is impossible to beat
the 1/k2 rate using only function and gradient evaluations. There
are careful demonstrations of this in the literature.

Note that in practice, αk can be chosen using a standard line search,
and a good choice of βk (both in theory and in practice) turns out
to be

βk =
k − 1

k + 2
.

Most significantly, note that in setting βk we do not need to know
anything about the function we are minimizing (such as strong con-
vexity parameters). This represents an important advantage com-
pared to the heavy ball method described before.

Newton’s Method

So far we have focused on what are called first order methods, that
is, optimization methods that assume our function is differentiable
and work by iterative taking the (first) derivative of the function to
calculate the appropriate step direction. For functions that are twice-
differentiable, we can sometimes dramatically reduce the number of
iterations required by exploiting second order information (i.e., the
second derivative).

The most common second order approach is based on Newton’s
method, which is a classical technique for finding the root of a
general differentiable function f (x) : R → R. Specifically, suppose
that we want to find an x ∈ R such that

f (x) = 0.

33

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 13:53, October 18, 2020

You may recall that one technique for doing this is to start at some
guess x0, and then follow the iteration

x(k+1) = x(k) − f (x(k))

f ′(x(k))
.

This iteration comes from taking a linear approximation at x(k) and
then finding the root for this approximation, as illustrated below:

x(k+1) x(k)

f (x)

f (x(k)) + f ′(x(k))(x− x(k))

x

Of course, there can be many roots, and which one we converge to
will depend on what we choose for x0. It is also very much possible
that the iterations do not converge for some initial values x0. But
there is a classical result that says that once we are “close enough”
to a particular root x0, we will have

|x0 − x(k+1)|︸ ︷︷ ︸
εk+1

≤ C · (x0 − x(k))2︸ ︷︷ ︸
ε2k

,

34

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 13:53, October 18, 2020

where the constant C depends on the ratio between the first and
second derivatives in an interval around x0.

2 The take-away here
is that close to the solution, Newton’s methods exhibits quadratic
convergence: the error at the next iteration is proportional to the
square of the error at the last iteration. Since we are concerned with
εk small, εk � 1, this means that under the right conditions, the
error goes down in dramatic fashion from iteration to iteration.

When f (x) is convex, twice differentiable, and has a minimizer, we
can find a minimizer by applying Newton’s method to the deriva-
tive, since finding a root of the derivative is the same as finding a
minimizer. We start at some initial guess x(0), and then take

x(k+1) = x(k) − f ′(x(k))

f ′′(x(k))
. (1)

We can interpret the iteration (1) above in the following way:

1. At x(k), approximate f (x) using the Taylor expansion

f (x) ≈ f (x(k)) + f ′(x(k))(x− x(k)) +
1

2
f ′′(x(k))(x− x(k))2.

2. Find the exact minimizer of this quadratic approximation. Tak-
ing the derivative of the expansion above and setting it equal
to zero yields the following optimality condition for x(k+1) to
be a minimizer:

(x(k+1) − x(k))f ′′(x(k)) = −f ′(x(k)).

This is just a re-arrangement of the iteration (1).

2There are various technical conditions that f must obey for this result
to hold, including the second derivative being continuous and the first
derivative not being equal to zero. Also, the condition “close enough” is
characterized by looking at ratios of derivatives on an interval around x0.

35

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 13:53, October 18, 2020

This last interpretation extends naturally to the case where f (x) is a
function of many variables, f : RN → R. We know that if f is convex
and twice differentiable, we have a minimizer x? when∇xf (x?) = 0.
Newton’s method to find such a minimizer proceeds as above. We
start with an initial guess x(0), and use the following iteration:

1. Take a Taylor approximation around f (x(k)):

f (x) ≈ f (x(k)) + 〈x− x(k), g〉 +
1

2
(x− x(k))TH(x− x(k))

where g = ∇xf (x(k)) and H = D2
f(x

(k)).

2. Find the exact minimizer to this approximation:

minimize
x∈RN

gT(x− x(k)) +
1

2
(x− x(k))TH(x− x(k)).

Since H is symmetric and positive semi-definite, we know that
the conditions for x(k+1) being a minimizer3 are

H(x(k+1) − x(k)) = −g.

If H is invertible (i.e., it is strictly positive definite), then we
have a unique minimizer and set

x(k+1) = x(k) −H−1g.

To summarize, this gives us an update of the form

x(k+1) = x(k) −
(
D2

f(x
(k))
)−1
∇xf (x(k)).

3Take the gradient of this new expression and set it equal to 0.

36

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 13:53, October 18, 2020

This procedure is often referred to as a pure Newton step, as it does
not involve the selection of a step size. In practice, however, it is
often beneficial to choose the step direction as

d(k) = −
(
D2

f(x
(k))
)−1
∇f (x(k)),

and then choose a step size αk using a backtracking line search, and
then take

x(k+1) = x(k) + αkd
(k)

as before.

Quasi-Newton Methods

Newton’s method is great in that it converges to tremendous accu-
racy in a very surprisingly small number of iterations, especially for
smooth functions. It is not so great in that each iteration can be
extremely expensive. To compute the step direction,

d(k) =
(
D2

f(x
(k))
)−1
∇xf (x(k)),

we have to

1. compute the gradient (an N × 1 vector),

2. compute the Hessian (an N ×N matrix),

3. invert the Hessian and apply the inverse to the gradient.

Typically, computing the gradient is reasonable (maybe O(N 2) or
O(N) computations and storage). Computing and inverting the
Hessian might be harder; in general, these operations take O(N 3)
computations, and this is something we will have to repeat at every
iteration. If N is very large, this can be completely impractical.

37

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 13:53, October 18, 2020

At the end of the day, the quadratic model is exactly that — a
model. A natural question to ask is if there are alternative quadratic
models that might be cheaper while retaining the essential efficacy of
Newton. There are, and they are called quasi-Newton methods.

Instead of calculating (and inverting) the Hessian at every point, we
estimate the Hessian. We do this by collecting information about
the curvature of the functional from the point we visit (and their
gradients) as we iterate — basically, we are approximating the Hes-
sian (the second derivative) by measuring how the gradients (the first
derivative) change from point to point. What is great is that these
Hessian estimates and their inverses can be quickly updated from one
iteration to the next, thus avoiding the expensive matrix inversion.

The cost of these methods is comparable to gradient descent — along
with the gradient computation, we will have to do a few matrix-vector
multiplies at each iteration, the cost of which is again typically com-
parable to calculating ∇xf (x(k)). Theoretically, their convergence
properties are better than gradient descent, but not as good as New-
ton. In practice, they significantly outperform gradient descent and
they are practical for problem sizes where we dare not even dream
about computing the Hessian and inverting it.

Approximating the Hessian

Newton’s method works by forming a quadratic model around the
current iterate x(k):

f̃k(x
(k) + v) = f (x(k)) + 〈v, gk〉 +

1

2
vTHkv.

The particular choices of gk = ∇xf (x(k)) and Hk = D2
f(x

(k)) are
motivated by Taylor’s theorem. We minimize the surrogate func-

38

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 13:53, October 18, 2020

tional above to compute the step direction

d(k) = −H−1
k gk,

choosing a step size αk, then moving

x(k+1) = x(k) + αkd
(k).

We then repeat with a new quadratic model,

f̃k+1(x
(k+1) + v) = f (x(k+1)) + 〈v, gk+1〉 +

1

2
vTHk+1v.

Quasi-newton methods operate in this same general framework, and
keep the same linear term gk = ∇xf (x(k)). Rather than using the
Hessian, we ask only that our quadratic model yield gradients that
are consistent with the true gradient at both the current point x(k+1)

and the previous point x(k). That is, we want

∇xf̃k+1(x
(k+1)) = ∇xf (x(k+1))

and
∇xf̃k+1(x

(k)) = ∇xf (x(k)).

Using the gradients for the gk in the linear terms, the first condition
above is automatic no matter what we choose for Hk+1, as we can
see by taking v = 0 above. So we would like to choose Hk+1 so that
the second condition above holds. This means we need that

∇xf̃k+1(x
(k+1) − αkd(k)) = ∇xf (x(k)),

meaning we need to choose Hk+1 so that,

αkHk+1d
(k) = ∇xf (x(k+1))−∇xf (x(k)).

39

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 13:53, October 18, 2020

Since αkd
(k) = x(k+1) − x(k), we can write this condition compactly

as
Hk+1sk = yk, (2)

where

sk = x(k+1) − x(k), yk = ∇xf (x(k+1))−∇xf (x(k)).

There are many choices for Hk+1 that satisfy (2), even if we add the
constraint that it be symmetric and positive definite (which we need
to ensure that Hk+1 is invertible, allowing us to compute d(k+1).
In general, quasi-Newton methods choose Hk+1 so that it can be
easily computed from Hk — different update rules lead to different
quasi-Newton methods.

BFGS

Perhaps the most widely used quasi-Newton methods, and what is
viewed to be the most effective, is called the BFGS4 algorithm. BFGS
uses the following update rule for constructing Hk+1 from Hk:

Hk+1 = Hk +
yky

T
k

yT
ksk
−Hksk(Hksk)

T

sT
kHksk

.

At each iteration, we update Hk by adding two rank-1 matrices
to Hk. These are carefully chosen to ensure that the constraint
Hk+1sk = yk is always satisfied. This is easy to check:

Hk+1sk = Hksk +
yky

T
ksk

yT
ksk

−Hksks
T
kH

T
ksk

sT
kHksk

= Hksk + yk −Hksk
= yk,

4Named after Broyden, Fletcher, Goldfarb, and Shanno.

40

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 13:53, October 18, 2020

where above we exploit the fact that Hk is symmetric.

It is also the case that if Hk is positive definite then Hk+1 will also
be positive definite, provided that f is strictly convex.5 This follows
from an elementary fact about convex functions that we have not
used in this class so far. Specifically, recall that if f is differentiable
and strictly convex, then we have that for any x,x′ ∈ RN

f (x) > f (x′) + 〈x− x′,∇xf (x′)〉,

and similarly we must also have that

f (x′) > f (x) + 〈x′ − x,∇xf (x)〉.

Adding these two together and rearranging gives

〈x− x′,∇xf (x)−∇xf (x′)〉 > 0.

This holds for any x,x′, but note that if we set x = x(k+1) and
x′ = x(k), then this tells us that yT

ksk > 0. (This is reassuring, since
if yT

ksk = 0 then this update rule would be somewhat problematic.)

The fact that yT
ksk > 0 ensures that yky

T
k /y

T
ksk is positive definite.

We can also show that

Hk −
Hksk(Hksk)

T

sT
kHksk

(3)

5Newton and quasi-Newton algorithms are typically motivated in the con-
text of twice differentiable functions so that the Hessian matrix always
exists. Strict convexity ensures that the Hessian is always invertible,
which we clearly need. If f is not strictly convex, we can actually still use
the BFGS algorithm, but we need to be a bit more careful. Here we use
strict convexity to show that yT

k sk > 0. In the case of functions that are
not strictly convex, this condition can be ensured instead as a part of the
line search that selects the step size αk.

41

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 13:53, October 18, 2020

is positive semidefinite, and thus Hk+1 must be positive definite.

To see that (3) is positive semidefinite, recall that a symmetric matrix
M is positive semidefinite if xTMx ≥ 0 for all x 6= 0. Thus, we
would like to show that

xTHkx ≥
xTHksks

T
kHkx

sT
kHksk

.

Notice that the numerator in the fraction above can be written as
(xTHksk)

2. A fact that you can easily verify on your own is that for
any symmetric positive definite matrix M , xTMy defines a valid
inner product. Applying the Cauchy-Schwarz inequality with this
inner product yields,

(xTHksk)
2 ≤ (xTHkx)(sT

kHksk).

and thus (3) is positive semidefinite, as desired.

In practice, what we actually need at each iteration is H−1
k . It turns

out that if Hk+1 is a low-rank perturbation of Hk, there is also a
simple and efficient way to compute H−1

k+1 from H−1
k . In particular,

a tedious calculation using the Woodbury matrix identity6 gives the
formula:

H−1
k+1 = H−1

k +
(sT

kyk + yT
kH

−1
k yk)(sks

T
k)

(sT
kyk)

2
−H−1

k yks
T
k + sky

T
kH

−1
k

sT
kyk

.

Above, we have spoken only about updates to the quadratic model.
The BFGS algorithm requires not only an initial guess x(0), but also
an initial matrix H0. The most common choice here is take H0 = I.

6(A + UCV)−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1.

42

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 13:53, October 18, 2020

This gives us the following algorithm:

BFGS

Input: x(0), H−1
0 .

Initialize: k = 0, g0 = ∇xf (x(0))

while not converged do

d(k) = −H−1
k gk

Select αk using a line search

x(k+1) = x(k) + αkd
(k)

gk+1 = ∇xf (x(k+1))

s = x(k+1) − x(k), y = gk+1 − gk, a = H−1
k y, γ = sTy

H−1
k+1 = H−1

k + γ+yTa
γ2

ssT − 1
γ
asT − 1

γ
saT

k = k + 1
end while

Convergence of BFGS

There are two main convergence results for BFGS with a step size
chosen using a backtracking line search.

Global convergence: If f is strongly convex, then BFGS with
backtracking converges to x? from any starting point x(0) and initial
quadratic model H0 � 0.

Superlinear local convergence: If f is strongly convex and the
gradient of f is M -smooth (i.e., the Hessian is Lipshitz), then when

43

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 13:53, October 18, 2020

we are close to the solution

‖x(k+1) − x?‖2 ≤ ck‖x(k) − x?‖2
where ck → 0.

This is not quite the quadratic convergence of the Newton method,
but it can still be much, much faster than the linear rate given by
gradient descent. In practice, there is often times very little difference
between the convergence of BFGS and Newtons method.

44

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 13:53, October 18, 2020

