
Algorithms for unconstrained minimization

One of the benefits of minimizing convex functions is that we can
often use very simple algorithms to find solutions. Specifically, we
want to solve

minimize
x∈RN

f (x),

where f is convex. For now we will assume that f is also differen-
tiable.1 We have just seen that, in this case, a necessary and sufficient
condition for x? to be a minimizer is that the gradient vanishes:

∇xf (x?) = 0.

Thus, we can equivalently think of the problem of minimizing f (x)
as finding an x? that ∇xf (x?) = 0. As noted before, it is not a
given that such an x? exists, but for now we will assume that f does
have (at least one) minimizer.

Every general-purpose optimization algorithm we will look at in this
course is iterative — they will all have the basic form:

Iterative descent

Initialize: k = 0, x(0) = initial guess
while not converged do

calculate a direction to move d(k)

calculate a step size αk ≥ 0
x(k+1) = x(k) + αk d

(k)

k = k + 1
end while

1We will also be interested in cases where f is not differentiable. We will
revisit this later in the course.

16

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 22:32, October 20, 2020



The central challenge in designing a good algorithm mostly boils
down to computing the direction d(k). As a preview, here are some
choices that we will discuss:

1. Gradient descent: We take

d(k) = −∇xf
(
x(k)

)
.

This is the direction of “steepest descent” (where “steepest”
is defined relative to the Euclidean norm). Gradient descent
iterations are cheap, but many iterations may be required for
convergence.

2. Accelerated gradient descent: We can sometimes reduce
the number of iterations required by gradient descent by incor-
porating a momentum term. Specifically, we first compute

p(k) =
(
x(k) − x(k−1)

)
and then take

d(k) = −∇xf
(
x(k)

)
+
βk
αk

p(k)

or

d(k) = −∇xf
(
x(k) + βkp

(k)
)

+
βk
αk

p(k).

The “heavy ball” method and conjugate gradient descent use
the former update rule; Nesterov’s method uses the latter. We
will see later that by incorporating this momentum term, we
can sometimes dramatically reduce the number of iterations
required for convergence.

3. Newton’s method: Gradient descent methods are based on
building linear approximations to the function at each iteration.

17

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 22:32, October 20, 2020



We can also build a quadratic model around x(k) then compute
the exact minimizer of this quadratic by solving a system of
equations. This corresponds to taking

d(k) = −
(
D2

f

(
x(k)

))−1
∇xf

(
x(k)

)
,

that is, the inverse of the Hessian evaluated at x(k) applied to
the gradient evaluated at the same point. Newton iterations
tend to be expensive (as they require a system solve), but they
typically converge in far fewer iterations than gradient descent.

4. Quasi-Newton methods: If the dimension N of x is large,
Newton’s method is not computationally feasible. In this case
we can replace the Newton iteration with

d(k) = −Q(k)∇xf
(
x(k)

)
where Q(k) is an approximation or estimate of

(
D2

f

(
x(k)

))−1
.

Quasi-Newton methods may require more iterations than a
pure Newton approach, but can still be very effective.

Whichever direction we choose, it should be a descent direction,
i.e., d(k) should satisfy〈

d(k),∇xf
(
x(k)

)〉
≤ 0.

Since f is convex, it is always true that

f (x + αd) ≥ f (x) + α 〈d,∇xf (x)〉 ,

and so to decrease the value of the functional while moving in direc-
tion d, it is necessary that the inner product above be negative.

18

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 22:32, October 20, 2020



Line search

Given a starting point x(k) and a direction d(k), we still need to decide
on αk, i.e., how far to move. With x(k) and d(k) fixed, we can think
of the remaining problem as a one-dimensional optimization problem
where we would like to choose α to minimize (or at least reduce)

φ(α) = f
(
x(k) + αd(k)

)
.

Note that we don’t necessarily need to find the true minimum – we
aren’t even sure that we are moving in the right direction at this
point – but we would generally still like to make as much progress as
possible before calculating a new direction d(k+1). There are many
methods for doing this, here are three:

Exact: Solve the 1D optimization program

minimize
α≥0

φ(α).

This is typically not worth the trouble, but there are instances (e.g.,
least squares and other unconstrained convex quadratic programs)
when it can be solved analytically.

Fixed: We can also just use a constant step size αk = α. This will
work if the step size is small enough, but usually this results in way
too many iterations.

Backtracking: The problem with a fixed step size is that we cannot
guarantee convergence of α is too large, but when α is too small we
may not make much progress on each iteration. A popular strategy

19

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 22:32, October 20, 2020



is to do some kind of rudimentary search for a step size α that gives
us sufficient progress as measured by the inequality

f
(
x(k)

)
− f

(
x(k) + αd(k)

)
≥ cα

〈
d(k),∇xf

(
x(k)

)〉
,

where c ∈ (0, 1). This is known as the Armijo condition. For α
satisfying the inequality we have that the reduction in f is propor-
tional to both the step length α and the directional derivative in the
direction d(k).

Note that we can equivalently write this condition as

φ(α) ≤ h(α) := f
(
x(k)

)
+ cα

〈
d(k),∇xf

(
x(k)

)〉
.

Recall that from convexity, we also have that

φ(α) ≥ g(α) := f
(
x(k)

)
+ α

〈
d(k),∇xf

(
x(k)

)〉
.

Since c < 1, we always have φ(α) ≤ h(α) for sufficiently small α.
An example is illustrated below:

α

g(α)

h(α)

φ(α)

allowable α

20

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 22:32, October 20, 2020



We still haven’t said anything about how to actually use the Armijo
condition to pick α. Within the set of allowable α satisfying the
condition, the (guaranteed) reduction in f is proportional to α, so
we would generally like to select α to be large.

This inspires the following very simple backtracking algorithm:
start with a step size of α = ᾱ, and then decrease by a factor of ρ
until the Armijo condition is satisfied.

Backtracking line search

Input: x(k), d(k), ᾱ > 0, c ∈ (0, 1), and ρ ∈ (0, 1).

Initialize: α = ᾱ

while φ(α) > h(α) do

α = ρα

end while

The backtracking line search tends to be cheap, and works very well
in practice. A common choice for ᾱ is ᾱ = 1

2
, but this can vary

somewhat depending on the algorithm. The choice of c can range
from extremely small (10−4, encouraging larger steps) to relatively
large (0.3, encouraging smaller steps), and typical values of ρ range
from 0.1, (corresponding to a relatively coarse search) to 0.8 (corre-
sponding to a finer search).

21

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 22:32, October 20, 2020



Convergence of gradient descent

Here we will prove convergence guarantees for gradient descent,
i.e., the version of our iterative algorithm where we set

d(k) = −∇xf
(
x(k)

)
,

resulting in the update rule

x(k+1) = x(k) − αk∇xf
(
x(k)

)
.

We will look at two different regularity assumptions on f , and trans-
late them into convergence rates. Throughout, we will assume that
f is differentiable everywhere.

Smoothness

First, we will see what we can show if we assume that f is smooth
in a certain sense.2 Qualitatively, we would just like to assume that
the gradient changes in a controlled manner as we move from point
to point. Quantitatively, we will assume that f has a Lipschitz
gradient. This means that there exists an M > 0 such that

‖∇xf (x)−∇xf (y)‖2 ≤M‖x− y‖2, (1)

for all x,y ∈ RN . We will say that such a function is M-smooth.

2Methods for nonsmooth f(x) are also of great interest, and will be covered
later in the course. Nonsmooth methods are not much more involved
algorithmically, but they are slightly harder to analyze.

22

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 22:32, October 20, 2020



One can show that f obeying (1) is actually equivalent to saying that

f (y) ≤ f (x) + 〈y − x,∇xf (x)〉 +
M

2
‖y − x‖22 (2)

for all x,y ∈ RN .

Again, recall that for any convex function, we have that

f (y) ≥ f (x) + 〈y − x,∇xf (x)〉,

so this condition tells us that at any point x we can bound f from
below by a linear approximation, but we can also bound it from above
using a quadratic approximation.

Yet another way to interpret this assumption is that if f is twice
differentiable, then it is equivalent to

D2
f(x) �MI,

i.e., that the largest eigenvalue of the Hessian is bounded by M for
all x. Note, however, that the analysis below does not require f to
be twice differentiable.

Convergence of gradient descent: M-smoothness

Now, let’s consider running gradient descent on such a function with
a fixed step size3 αk = 1/M . To keep the notation a little more

3This requires you to know M , which you often would not know in practice.
In fact, the analysis only requires α < 1/M and it is not too hard to extend
this approach to get a similar guarantee when using a backtracking line
search for both M -smooth functions as well as strongly convex ones.

23

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 22:32, October 20, 2020



compact, we will let x = x(k) and x+ = x(k+1), so that the central
gradient descent iteration is just

x+ = x− 1

M
∇xf (x).

From our assumption that f is M -smooth, we know that f satis-
fies (4), and thus plugging in y = x+, we obtain

f (x+) ≤ f (x)−
〈
− 1

M
∇xf (x),∇xf (x)

〉
+
M

2

∥∥∥∥ 1

M
∇xf (x)

∥∥∥∥2
2

= f (x)− 1

M
‖∇xf (x)‖22 +

1

2M
‖∇xf (x)‖22

= f (x)− 1

2M
‖∇xf (x)‖22. (3)

Note (3) shows that f (x+) < f (x) as long as we are not already at
the solution, so we are at least guaranteed to make some progress
at each iteration. In fact, it says a bit more, giving us a guarantee
regarding how much progress we are making, namely that

f (x)− f (x+) ≥ 1

2M
‖∇xf (x)‖22,

so that if the gradient is large we are guaranteed to make a large
amount of progress.

In the technical addendum at the end of these notes (a bit long, but
not actually hard), we show that by combining this result with the
definition of convexity and doing some clever manipulations, we can
get a guarantee of the form

f (x(k))− f (x?) ≤ M

2k
‖x(0) − x?‖22.

24

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 22:32, October 20, 2020



Thus, for M -smooth functions, we can guarantee that the error is
O(1/k) after k iterations. Another way to put this is to say that we
can guarantee accuracy

f (x(k))− f (x?) ≤ ε

as long as

k ≥ M

2ε
‖x(0) − x?‖22.

Note that if ε is very small, this says we can expect to need a very
large number of iterations.

Strong convexity

We will now consider a stronger assumption on f and show that we
can get greatly improved guarantees. Recall that before we assumed
that f was M -smooth, meaning that

f (y) ≤ f (x) + 〈y − x,∇xf (x)〉 +
M

2
‖y − x‖22 (4)

for all x,y ∈ RN . Now we will impose the additional assumption
that f is also strongly convex (with strong convexity parameter
m > 0), meaning that

f (y) ≥ f (x) + 〈y − x,∇xf (x)〉 +
m

2
‖y − x‖22. (5)

Note that this bound holds for any convex function if m = 0. When
m > 0 this is a stronger assumption. In the case that f is twice
differentiable, (5) is equivalent to the assumption that D2

f(x) � mI,
so that strong convexity together with smoothness implies that

mI � D2
f(x) � MI.

25

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 22:32, October 20, 2020



That is, the eigenvalues of the Hessian are bounded between m > 0
and M < ∞. Again, remember that strong convexity does not
require f to be twice differentiable. Note also that strong convex-
ity implies strict convexity, but strict convexity does not necessarily
imply strong convexity.

Convergence of gradient descent: Strong convexity

Here we will show that if a function is strongly convex, in addition
to being M -smooth, then we can obtain a significantly improved
convergence guarantee compared to what we had in the case of M -
smoothness alone. We begin our analysis in the same way as before,
which began by showing in (3) that M -smoothness implies that we
can bound f (x)−f (x+) in terms of ‖∇xf (x)‖22. Next we use strong
convexity to obtain a lower bound on ‖∇xf (x)‖22.

Specifically, recall from the definition of strong convexity in (5) that
for any x,y ∈ RN

f (y) ≥ f (x) + 〈y − x,∇xf (x)〉 +
m

2
‖y − x‖22.

Note that 〈y − x,∇xf (x)〉 will be minimized when y − x is pro-
portional to −∇xf (x). Setting y − x = −C∇xf (x) we have

〈y − x,∇xf (x)〉 +
m

2
‖y − x‖22 =

(
−C +

mC2

2

)
‖∇xf (x)‖22.

The quantity mC2/2−C is minimized by C = 1/m. Thus, for any
y we have

f (y) ≥ f (x) +

(
mC2

2
− C

)
‖∇xf (x)‖22 ≥ f (x)− 1

2m
‖∇xf (x)‖22.

26

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 22:32, October 20, 2020



In particular, this applies when y = x?, which after some rearranging
yields

‖∇xf (x)‖22 ≥ 2m (f (x)− f (x?)) .

Combining this with (3) we have

f (x+)− f (x?) ≤ f (x)− f (x?)− m

M
(f (x)− f (x?)) ,

or equivalently, that

f (x+)− f (x?)

f (x)− f (x?)
≤
(

1− m

M

)
.

That is, the gap between the current value of the objective function
and the optimal value has been cut down by a factor of 1−m/M < 1.

Applying this relationship recursively, we see that after k iterations
of gradient descent, we have

f (x(k))− f (x?)

f (x(0))− f (x?)
≤
(

1− m

M

)k
.

Another way to say this is that we can guarantee accuracy

f (x(k))− f (x?) ≤ ε,

as long as

k ≥ log(f (x(0))− f (x?)/ε)

log(M/(M −m))
.

This is much faster convergence than what we obtained before, but
of course, we made much stronger assumptions.

27

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 22:32, October 20, 2020



The analysis above has focused on convergence in terms of showing
how many iterations are required to ensure that f (x(k)) − f (x?) is
small. It is also possible to provide guarantees on ‖x(k) − x?‖22. In
particular, if f is both M -smooth and also strongly convex, it is
possible to show (although we will not do so here) that

‖x(k+1) − x?‖2 ≤
(
M −m
M + m

)
‖x(k) − x?‖2,

which, by induction on k means

‖x(k) − x?‖2 ≤
(
M −m
M + m

)k
‖x(0) − x?‖2.

Note that if we define κ = M/m, then

M −m
M + m

=
κ− 1

κ + 1
.

We have seen this bound before in our discussion of least squares. In
this particular context, our objective function is twice differentiable,
and the maximum/minimum eigenvalues of the Hessian are precisely
the largest/smallest singular values of the matrix A. Thus κ as we
have defined it here corresponds exactly to the condition number of
A in the context of least squares. Recall that before we showed that
the result described above can be equivalently stated as follows: in
order to guarantee that we have reduced the initial error by a factor
of ε, ‖x(k) − x?‖2/‖x(0) − x?‖2 ≤ ε, we need

k & κ · log(1/ε).

28

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 22:32, October 20, 2020



Technical Details: Convergence analysis for M-smooth
functions

Here we complete the convergence analysis for gradient descent on
M -smooth functions that is summarized above. Specifically, recall
that above in (3) we showed that if f is M -smooth then

f (x+) ≤ f (x)− 1

2M
‖∇xf (x)‖22.

Moreover, by the convexity of f ,

f (x) ≤ f (x?) + 〈x− x?,∇xf (x)〉,

where x? is a minimizer of f , and so we have

f (x+) ≤ f (x?) + 〈x− x?,∇xf (x)〉 − 1

2M
‖∇xf (x)‖22.

Substituting ∇xf (x) = M(x− x+) then yields

f (x+)− f (x?) ≤M〈x− x?,x− x+〉 − M

2
‖x− x+‖22. (6)

We can re-write this in a slightly more convenient way using the fact
that

‖a− b‖22 = ‖a‖22 − 2〈a, b〉 + ‖b‖22
and thus

2〈a, b〉 − ‖b‖22 = ‖a‖22 − ‖a− b‖22.
Setting a = x − x? and b = x − x+ and applying this to (6), we
obtain the bound

f (x+)− f (x?) ≤ M

2

(
‖x− x?‖22 − ‖x+ − x?‖22

)
.

29

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 22:32, October 20, 2020



This result bounds how far away f (x+) is from the optimal f (x?) in
terms (primarily) of the error in the previous iteration: ‖x − x?‖22.
We can use this result to bound f (x+)−f (x?) in terms of the initial
error ‖x(0) − x?‖22 by a clever argument.

Specifically, this bound holds not only for iteration k, but for all
iterations i = 1, . . . , k, so we can write down k inequalities and then
sum them up to obtain

k∑
i=1

f (x(i))− f (x?) ≤ M

2

(
k∑
i=1

‖x(i−1) − x?‖22 − ‖x(i) − x?‖22

)
.

The right-hand side of this inequality is what is called a telescopic
sum: each successive term in the sum cancels out part of the previous
term. Once you write this out, all the terms cancel except for two
(one component from the i = 1 term and one from the i = k term)
giving us:

k∑
i=1

f (x(i))− f (x?) ≤ M

2

(
‖x(0) − x?‖22 − ‖x(k) − x?‖22

)
≤ M

2
‖x(0) − x?‖22.

Since, as noted above, f (x(i)) is monotonically decreasing in i, we
also have that

k
(
f (x(k))− f (x?)

)
≤

k∑
i=1

f (x(i))− f (x?),

and thus

f (x(k))− f (x?) ≤ M

2k
‖x(0) − x?‖22,

which is exactly what we wanted to show.

30

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 22:32, October 20, 2020


