
Iterative methods for solving least squares

When A has full column rank, our least squares estimate is

x̂ = (ATA)−1ATy.

If A isM×N , then constructing ATA costsO(MN 2) computations,
and solving the N × N system ATAx = ATy, for example, by
computing the inverse of ATA, costsO(N 3) computations. A similar
complexity is involved in computing the SVD of A, so that will not
be any cheaper. (Note that for M ≥ N , the cost of constructing the
matrix actually exceeds the cost to solve the system.)

This cost can be prohibitive for even moderately large M and N .
But least squares problems with large M and N are common in
the modern world. For example, a typical 3D MRI scan will try to
reconstruct a 128×128×128 cube of “voxels” (3D pixels) from about
5 million measurements. In this case, the matrix A, which models
the mapping from the 3D image x to the set of measurements y
induced by the MRI machine, is M × N where M = 5 · 106 and
N = 2.1 · 106.

With those values, MN 2 is huge (∼ 1019); even storing the matrix
ATA in memory would require terabytes of RAM.

To address this we can consider approaches that return to our for-
mulation of least squares as an optimization program and then solve
it by an iterative descent method. Each iteration is simple, requiring
one application of A and one application of AT.

If ATA is “well-conditioned”, then these methods can converge in
very few iterations. We will be more precise about this later, but

57

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 22:45, September 24, 2020



here “well-conditioned” roughly means that the ratio of the largest
to the smallest singular values of A is not too big. When this works,
it can make the cost of solving a least squares problem dramatically
smaller — about the cost of a few hundred applications of A.

Moreover, we will not need to construct ATA or even A explicitly.
All we need is a “black box” which takes a vector x and returns Ax.
This is especially useful if it takes � O(MN) operations to apply
A or AT.

In the MRI example above, it turns out that A has a special relation-
ship to the Fourier transform, and because of this it takes about one
second to apply ATA, and a particular iterative method (the con-
jugate gradients method) converges in about 50 iterations, meaning
that the problem can be solved in less than a minute.

To see how this approach works, recall that the least squares estimate
is the solution to the optimization problem

minimize
x∈RN

‖Ax− y‖22.

Note that we can write this equivalently as

minimize
x∈RN

xTATAx− 2xTATy + yTy.

We can ignore terms that do not depend on x, and can also rescale
the objective function by a constant (for convenience) to obtain

minimize
x∈RN

1

2
xTATAx− xTATy. (1)

We have previously shown that a necessary and sufficient condition
for x̂ to be the the minimizer of (1) is to satisfy

ATAx = ATy.

58

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 22:45, September 24, 2020



More generally, for any H which is symmetric and positive definite
and any vector b, we can consider the optimization problem

minimize
x∈RN

1

2
xTHx− xTb, (2)

and by the same argument we can show that x̂ is the solution to (2)
if and only if

Hx̂ = b.

What remains is to show how we can actually solve an optimization
problem of the form (2) without directly solving the system Hx =
b. Here we will describe iterative methods — most prominently
gradient descent — that do exactly this.

Gradient descent

Say you have an unconstrained optimization program

minimize
x∈RN

f (x)

where f (x) : RN → R is convex. We will give a more formal defini-
tion later, but for now lets just go with the very informal notion that
convexity corresponds to a “bowl shape”. One simple way to solve
this program is to simply “roll downhill”. If we are sitting at a point
x(0), then as we mentioned previously in our review of multivariable
calculus, f decreases the fastest if we move in the direction of the
negative gradient −∇xf

(
x(0)

)
, where we recall that this notation

means the gradient of f with respect to x evaluated at x(0).

Thus, suppose that from a starting point x(0), we take a step in the
direction of the negative gradient, where the step size is controlled

59

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 22:45, September 24, 2020



by a parameter α0:

x(1) = x(0) − α0∇xf
(
x(0)

)
.

We then repeat this process:

x2 = x(1) − α1∇xf
(
x(1)

)
...

x(k) = x(k−1) − αk−1∇xf
(
x(k−1)

)
,

where, as before, the α0, α1, . . . are appropriately chosen step sizes.
8 Jonathan Richard Shewchuk

-4 -2 2 4 6

-6

-4

-2

2

4

1

2

0

Figure 8: Here, the method of Steepest Descent starts at 2 2 and converges at 2 2 .

Putting it all together, the method of Steepest Descent is:

(10)

(11)

1 (12)

The example is run until it converges in Figure 8. Note the zigzag path, which appears because each
gradient is orthogonal to the previous gradient.

The algorithm, as written above, requires two matrix-vector multiplications per iteration. The computa-
tional cost of Steepest Descent is dominated by matrix-vector products; fortunately, one can be eliminated.
By premultiplying both sides of Equation 12 by and adding , we have

1 (13)

Although Equation 10 is still needed to compute 0 , Equation 13 can be used for every iteration thereafter.
The product , which occurs in both Equations 11 and 13, need only be computed once. The disadvantage
of using this recurrence is that the sequence defined by Equation 13 is generated without any feedback from
the value of , so that accumulation of floating point roundoff error may cause to converge to some
point near . This effect can be avoided by periodically using Equation 10 to recompute the correct residual.

Before analyzing the convergence of Steepest Descent, I must digress to ensure that you have a solid
understanding of eigenvectors.

(from Shewchuk, “... without the agonizing pain”)

For our particular optimization problem

minimize
x

1

2
xTHx− xTb,

we can explicitly compute both the gradient and the best choice
of step size. The (negative) gradient is straightforward to compute
(you’ve already done this on the homework):

−∇x

(
1

2
xTHx− xTb

)∣∣∣∣
x=x(k)

= b−Hx(k).

60

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 22:45, September 24, 2020



Note that this can be interpreted as the difference between b and H
applied to the current iterate x(k). For this reason it is often called
the residual, denoted by

r(k) := b−Hx(k).

With this notation, the core gradient descent iteration can be written
as

x(k+1) = x(k) + αk r
(k).

As mentioned above, in this problem there is a nifty way to choose
an optimal value for the step size αk. We want to choose αk so that
f
(
x(k+1)

)
is as small as possible. It is not hard to show that if we

think of f
(
x(k) + αr(k)

)
as a function of α for α ≥ 0, then f is

a (convex) quadratic function. Thus to find the α that minimizes
f
(
x(k+1)

)
, we can choose the value of α that makes the derivative of

this function zero. Specifically, we want

d

dα
f
(
x(k) + αr(k)

)
= 0.

By the chain rule,

d

dα
f
(
x(k+1)

)
= ∇xf

(
x(k+1)

)T d

dα
x(k+1)

= ∇xf
(
x(k+1)

)T
r(k).

So we need to choose αk such that

∇xf
(
x(k+1)

)T
r(k) = 0,

or more concisely

r(k+1)Tr(k) = 0.

61

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 22:45, September 24, 2020



So let’s do this:

r(k+1)Tr(k) = 0

⇒
(
b−Hx(k+1)

)T
r(k) = 0

⇒
(
b−H

(
x(k) + αkr

(k)
))T

r(k) = 0

⇒
(
b−Hx(k)

)T
r(k) − αk r(k)THr(k) = 0

⇒ r(k)Tr(k) − αk r(k)THr(k) = 0

and so the optimal step size is

αk =
r(k)Tr(k)

r(k)THr(k)
.

The gradient descent algorithm performs this iteration until
‖Hx(k) − b‖2 is below some tolerance ε:

Gradient Descent, version 1

Initialize: x(0) = some guess, k = 0, r(0) = b−Hx(0).

while ‖r(k)‖2 ≥ ε (not converged) do

αk = r(k)Tr(k)/r(k)THr(k)

x(k+1) = x(k) + αk r
(k)

r(k+1) = b−Hx(k+1)

k = k + 1

end while

62

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 22:45, September 24, 2020



There is a nice trick that can save us one of two applications of H
needed in each iteration above. Notice that

r(k+1) = b−Hx(k+1) = b−H
(
x(k) + αkr

(k)
)

= r(k) − αkHr(k).

So we can save an application of H by updating the residual rather
than recomputing it at each stage.

Gradient Descent, more efficient version 2

Initialize: x(0) = some guess, k = 0, r(0) = b−Hx(0).
while ‖r(k)‖2 ≥ ε (not converged) do

q = Hr(k)

αk = r(k)Tr(k)/r(k)Tq

x(k+1) = x(k) + αk r
(k)

r(k+1) = r(k) − αk q
k = k + 1

end while

Convergence of gradient descent

The effectiveness of gradient descent depends critically on the “con-
ditioning” of H and the starting point. Consider the two examples
on the next page.

63

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 22:45, September 24, 2020



Convergence Analysis of Steepest Descent 19

0

5

10
15

20

1

20

40

60

80

100

0

0.2

0.4

0.6

0.8

0

5

10
15

20

Figure 17: Convergence of Steepest Descent as a function of (the slope of ) and (the condition
number of ). Convergence is fast when or are small. For a fixed matrix, convergence is worst when

.

-4 -2 2 4

-4

-2

2

4

6

-4 -2 2 4

-4

-2

2

4

6

-4 -2 2 4

-4

-2

2

4

6

-4 -2 2 4

-4

-2

2

4

6

1

(c)2

1

(d)2

1

(a)2

1

(b)2

Figure 18: These four examples represent points near the corresponding four corners of the graph in
Figure 17. (a) Large , small . (b) An example of poor convergence. and are both large. (c) Small
and . (d) Small , large .

(from Shewchuk, “... without the agonizing pain”)

When the conditioning of H is poor, which here corresponds to the
case where the ellipses denoting the level sets of our objective function
are more eccentric or “squished”, and we choose a bad starting point,
convergence can take many iterations even in simple cases.

We can make this a bit more precise if we define mathematically what
we really mean by the conditioning of H . The condition number
of a matrix H , typically denoted κ(H) is the ratio of the largest to
smallest singular values of H :

κ(H) =
σmax(H)

σmin(H)
.

Note that by the σmin(H) we mean the smallest non-zero singular

64

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 22:45, September 24, 2020



value, i.e., σR where R is the rank of H . The condition number is a
natural way of quantifying just how sensitive we are going to be to
noise, but it also plays a key role in determining how computationally
challenging it will be to solve the least squares problem using iterative
methods.

Specifically, later in this course we will provide a more general analy-
sis of gradient descent for general convex functions. This will provide
a convergence guarantee that shows how each iteration will reduce
the error between the iterates x(k) and the optimal solution x?. In the
context of gradient descent for least squares, this gives us a guarantee
of the form

‖x(k+1) − x?‖2 ≤
(
κ(H)− 1

κ(H) + 1

)
‖x(k) − x?‖2. (3)

Let’s think a bit about what this says. Note that the constant κ(H)−1
κ(H)+1

is always less than 1, so it says that each iteration makes some
progress. If κ(H) ≤ 3, then at each iteration we make a lot of
progress – cutting the error in half with each iteration. However, if
κ(H) is very large, this constant becomes very close to 1, indicating
only minor improvements.

Another way to think about this is to ask, given the above guarantee,
if we wanted to ensure that

‖x(k) − x?‖2 ≤ ε‖x(0) − x?‖2, (4)

how many iterations will we need? By applying (3) iteratively, we
have

‖x(k) − x?‖2 ≤
(
κ(H)− 1

κ(H) + 1

)k
‖x(0) − x?‖2.

65

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 22:45, September 24, 2020



To establish (4), we need to show that(
κ(H)− 1

κ(H) + 1

)k
≤ ε,

or equivalently, that

k log

(
κ(H)− 1

κ(H) + 1

)
≤ log ε. (5)

Using the bound log(x) ≥ (x− 1)/x (for x > 0), we have that

log

(
κ(H)− 1

κ(H) + 1

)
≥

κ(H)−1
κ(H)+1

− 1
κ(H)−1
κ(H)+1

= − 2

κ(H)− 1
.

From this we have that if (5) holds, then

k

(
− 2

κ(H)− 1

)
≤ log ε,

or more simply, that

k ≥ κ(H)− 1

2
log(1/ε).

The bottom line here is that if we want the error ‖x(k)−x?‖2 to be
a factor ε smaller than the error of our initial guess ‖x(0) − x?‖2,
then the number of iterations scales logarithmically with 1/ε, but
linearly with the condition number κ(H). Thus, for a fixed κ(H),
we can make ε quite small at only a modest cost in the number of
iterations, but if κ(H) grows to be very large, we may need a very
large number of iterations. You will see the effect of this in some
concrete examples on the next homework.

66

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 22:45, September 24, 2020


