
Stable Reconstruction with the Truncated SVD

We have seen that if A has very small singular values and we apply
the pseudo-inverse in the presence of noise, the results can be disas-
trous. But it doesn’t have to be this way. There are several ways
to stabilize the pseudo-inverse. We start be discussing the simplest
one, where we simply “cut out” the part of the reconstruction which
is causing the problems.

As before, we are given noisy indirect observations of a vector x
through a M ×N matrix A:

y = Ax + e. (1)

The matrix A has SVD A = UΣV T, and pseudo-inverse A† =
V Σ−1UT.

At this point it is useful to recall that we could write the matrix
UV T as a sum of outer products of the columns of U and V :

UV T =
R∑
r=1

urv
T
r ,

where R is the rank of A, and ur ∈ RM and vr ∈ RN are columns of
U and V , respectively. See the addendum at the end of these notes
on matrix multiplication if this way of writing a matrix product seems
unfamiliar.

Since Σ is diagonal, we can think ofUΣ as just rescaling the columns
of U , so that we can also rewrite A = UΣV T as a sum:

A =
R∑
r=1

σrurv
T
r ,

43

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 8:27, September 13, 2020

where the σr are the singular values. Similarly, we can write the
pseudo-inverse as

A† =
R∑
r=1

1

σr

vru
T
r .

Given y as above, we can write the least-squares estimate of x from
the noisy measurements as

x̂ls = A†y =
R∑
r=1

1

σr

〈y,ur〉vr. (2)

As we can see (and have seen before) if any one of the σr are very
small, the least squares reconstruction can be a disaster.

A simple way to avoid this is to simply truncate the sum (2), leaving
out the terms where σr is too small (1/σr is too big). Exactly how
many terms to keep depends a great deal on the application, as there
are competing interests. On the one hand, we want to ensure that
each of the σr we include has an inverse of reasonable size, on the
other, we want the reconstruction to be accurate (i.e., not to deviate
from the noiseless least squares solution by too much).

We form an approximation A′ to A by taking

A′ =
R′∑
r=1

σrurv
T
r ,

for some R′ < R. Again, our final answer will depend on which R′

we use, and choosing R′ is often times something of an art. It is clear
that the approximationA′ has rankR′. Note that the pseudo-inverse
of A′ is also a truncated sum

A′† =
R′∑
r=1

1

σr

vru
T
r .

44

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 8:27, September 13, 2020

Given noisy data y as in (1), we reconstruct x by applying the
truncated pseudo-inverse to y:

x̂trunc = A′†y =
R′∑
r=1

1

σr

〈y,ur〉vr.

How good is this reconstruction? To answer this question, we will
again compare it to the least squares reconstruction corresponding to
“noiseless” measurements x̂clean = A†Ax. The difference between
these two is the reconstruction error (relative to x̂clean) as

x̂trunc − x̂clean = A′†y −A†Ax
= A′†Ax +A′†e−A†Ax
= (A′† −A†)Ax +A′†e.

Proceeding further, we can write the matrix A′† −A† as

A′† −A† =
R∑

r=R′+1

− 1

σr

vru
T
r ,

and so the first term in the reconstruction error can be written as

(A′† −A†)Ax =
R∑

r=R′+1

− 1

σr

〈Ax,ur〉vr

=
R∑

r=R′+1

− 1

σr

〈
R∑
j=1

σj〈x,vj〉uj,ur

〉
vr

=
R∑

r=R′+1

− 1

σr

R∑
j=1

σj〈x,vj〉〈uj,ur〉vr

=
R∑

r=R′+1

−〈x,vr〉vr (since 〈ur,uj〉 = 0 unless j = r).

45

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 8:27, September 13, 2020

The second term in the reconstruction error can also be expanded
against the vr:

A′†e =
R′∑
r=1

1

σr

〈e,ur〉vr.

Combining these expressions, the reconstruction error can be written

x̂trunc − x̂clean =
R′∑
r=1

1

σr

〈e,ur〉vr︸ ︷︷ ︸ +
R∑

r=R′+1

−〈x,vr〉vr︸ ︷︷ ︸
= Noise error + Approximation error.

Since the vr are mutually orthogonal, and the two sums run over
disjoint index sets, the noise error and the approximation error will
be orthogonal. Also

‖x̂trunc − x̂clean‖22 = ‖Noise error‖22 + ‖Approximation error‖22

=
R′∑
r=1

1

σ2
r

|〈e,ur〉|2 +
R∑

r=R′+1

|〈x,vr〉|2.

The reconstruction error, then, is signal dependent and will depend
on how much of the vector x is concentrated in the subspace spanned
by vR′+1, . . . ,vR. We will lose everything in this subspace. On the
other hand, if it contains a significant part of x, then there is not
much least squares can do for you.

The worst-case noise error occurs when e is aligned with uR′:

‖Noise error‖22 =
R′∑
r=1

1

σ2
r

|〈e,ur〉|2 ≤
1

σ2
R′
· ‖e‖22.

46

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 8:27, September 13, 2020

Stable Reconstruction using Tikhonov
Regularization

Tikhonov1 regularization is another way to stabilize the least squares
recovery. It has the nice features that: 1) it can be interpreted using
optimization, and 2) it can be computed without direct knowledge
of the SVD of A.

Recall that we motivated the pseudo-inverse by showing that x̂ls =
A†y is a solution to

minimize
x∈RN

‖y −Ax‖22. (3)

When A has full column rank, x̂ls is the unique solution, otherwise
it is the solution with smallest energy. When A has full column
rank but has singular values which are very small, huge variations
in x (in directions of the singular vectors vr corresponding to the
tiny σr) can have very little effect on the residual ‖y −Ax‖22. As
such, the solution to (3) can have wildly inaccurate components in
the presence of even mild noise.

One way to counteract this problem is to modify (3) with a regu-
larization term that penalizes the size of the solution ‖x‖22 as well
as the residual error ‖y −Ax‖22:

minimize
x∈RN

‖y −Ax‖22 + δ‖x‖22. (4)

The parameter δ > 0 gives us a trade-off between accuracy and
regularization; we want to choose δ small enough so that the residual
for the solution of (4) is close to that of (3), and large enough so that
the problem is well-conditioned (i.e., stable in the presence of noise).

1Andrey Tikhonov (1906-1993) was a 20th century Russian mathematician.

47

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 8:27, September 13, 2020

Just as with (3), which is solved by applying the pseudo-inverse to
y, we can write the solution to (4) in closed form.

We have two ways of writing this solution. In terms of the SVD of
A, the minimizer of (4) is

x̂tik = V α̂tik

= V (Σ2 + δI)−1ΣUTy. (5)

Alternatively, we can write the solution in terms of A as

x̂tik = (ATA + δI)−1ATy. (6)

Note that even ifATA is not invertibleATA+δI always is (if δ > 0).
Thus, the expression (6) holds for all M,N, and R. It is also the
case that

x̂tik = AT(AAT + δI)−1y.

You will show that all of these expressions are equivalent on the next
homework.

Tikhonov regularization is in some sense very similar to the truncated
SVD, but with one significant advantage: because of the second way
of writing the solution, we do not need to explicitly calculate the SVD
to solve (4). The importance of not needing to explicitly compute
the SVD is significant when we are solving large problems. When A
is large (M,N > 105, say) it may be expensive or even impossible to
construct the SVD and compute with it explicitly. However, if it has
special structure (if it is sparse, for example), then it may take many
fewer than MN operations to compute a matrix vector productAx.

In these situations, a matrix free iterative algorithm can be used
to perform the inverse required in (6). A prominent example of such

48

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 8:27, September 13, 2020

an algorithm is gradient descent and its many variants, which we
will see very soon.

We can get a better feel for what Tikhonov regularization is doing
by comparing it directly to the pseudo-inverse. Recall that the least
squares reconstruction x̂ls can be written as

x̂ls =
R∑
r=1

1

σr

〈y,ur〉vr.

The Tikhonov reconstruction x̂tik derived above is

x̂tik =
R∑
r=1

σr

σ2
r + δ

〈y,ur〉vr. (7)

Notice that when σr is much larger than δ,

σr

σ2
r + δ

≈ 1

σr

, σr � δ,

but when σr is small

σr

σ2
r + δ

≈ 0, σr � δ.

Thus the Tikhonov reconstruction modifies the important parts (com-
ponents where the σr are large) of the pseudo-inverse very little, while
ensuring that the unimportant parts (components where the σr are
small) affect the solution only by a very small amount. This damp-
ing of the singular values, is illustrated below.

49

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 8:27, September 13, 2020

σr
σ2r+δ

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

5

6

σr

Above, we see the damped multipliers σr/(σ2
r + δ) versus σr for

δ = 0.1 (blue), δ = 0.05 (red), and δ = 0.01 (green). The black
dotted line is 1/σr, the least squares multiplier. Notice that for large
σr (σr > 2

√
δ, say), the damping has almost no effect.

This damping makes the Tikhonov reconstruction exceptionally sta-
ble; large multipliers never appear in the reconstruction (7). In fact
it is easy to check that

σr

σ2
r + δ

≤ 1

2
√
δ

no matter the value of σr.

You can perform a very similar kind of noise analysis for Tikhonov
reconstruction as we just did for the truncated SVD, but we will leave
you to do this at home.

50

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 8:27, September 13, 2020

A geometric perspective on least squares

Before we finally move on to talk a bit more about practical algo-
rithms, lets see one more way in which the SVD can help us to think
about what least squares is doing.

Specifically, another way to think about least squares involves a sim-
ple geometric problem. Suppose we are given a vector x ∈ RM and
a subspace2 T = span({a1,a2, . . . ,aN}) (where N < M).

If x does not already live in the span of a1,a2, . . . ,aN , we might
ask “what is the closest point x̂ ∈ T to x? This is illustrated below:

x

T

x̂

Mathematically, we want to find the x̂ ∈ T that minimizes ‖x−x̂‖2,
i.e., given x, we want to solve the optimization program

minimize
y∈RM

‖x− y‖22 subject to y ∈ T .

This might initially seem different than what we’ve been consider-
ing so far – it looks like a least squares problem, but we have the
constraint that y lives in a subspace. However, think for a moment
about what the constraint y ∈ T actually means.
2Recall that a subspace of RM is just a set of vectors that can be thought of
as a vector space in its own right, meaning that any linear combination of
vectors in the subspace produces another vector in that same subspace.
The span of N < M vectors in RM , such as a 2D plane in 3 dimensions,
is the canonical example of a subspace.

51

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 8:27, September 13, 2020

If y ∈ T , then y can be written as a linear combination of the
vectors a1, . . . ,aN . If A is the M × N matrix with columns given
by a1, . . . ,aN , this is equivalent to saying that we can write y = Aα
for some α ∈ RN . Thus, instead of optimizing over y ∈ T we can
simply optimize over α in the equivalent problem

minimize
α∈RN

‖x−Aα‖22.

Note that this is simply the standard least squares problem we have
been studying for a while now, with solution α̂ = V Σ−1UTx. This
gives us a solution for x̂ of our original problem of

x̂ = Aα̂

= UΣV TV Σ−1UTx

= UΣΣ−1UTx

= UUTx.

Note that in the picture on the previous page, I indicated that the
vector x̂−x was orthogonal to the line that represents the subspace
T . This is a general fact for least squares solutions: at the optimal
x̂, we always have that the error x̂−x is orthogonal to T = R(A).

This is easy to see using the SVD. Since for any y ∈ R(A) we can
write y = UΣV Tα, we have

〈x̂− x,y〉 = 〈UUTx− x,UΣV Tα〉
= αTV ΣUTUUTx−αTV ΣUTx

= αTV ΣUTx−αTV ΣUTx

= 0,

for any α ∈ RN .

52

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 8:27, September 13, 2020

The fact that the optimal approximation to x in T , x̂ results in an
error x̂ − x that is orthogonal to T is often called the orthogo-
nality principle. In fact, you can actually start a discussion of
least squares by first showing that the orthogonality principle must
be true, and then using this fact to derive the solution to the least
squares problem.

Another piece of terminology you may encounter is that x̂ is the
orthogonal projection of x onto T . In general, when people talk
about an orthogonal projection, this is simply shorthand for taking
a vector and finding the closest point in some subspace T to x. The
fact that you do this by finding a point in T from which the direction
to x is orthogonal to T is why it gets the name “orthogonal”.

53

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 8:27, September 13, 2020

A note on matrix multiplication

Although we have encountered some of these concepts already, now
is a good time to review some basic notions involving how we think
about matrix multiplication. When dealing with simple matrix-
vector products, these ideas are straightforward, but as we get to
increasingly complex matrix factorizations, it can be harder to break
down what is happening.

Matrix-vector multiplication

Let’s begin by considering simple matrix-vector multiplication Ax.
There are really two ways to think about this. First, suppose that
A is an M ×N matrix. We can think of A as the concatenation of
N columns, denoted by a1,a2, . . . ,aN :

A =

 | | |
a1 a2 · · · aN

| | |

 .
The first way of thinking of a matrix-vector multiplication is that
Ax is a weighted combination of the columns of A:

 | | |
a1 a2 · · · aN

| | |



x1

x2
...
xN

 = x1a1 + x2a2 + · · · + xNaN .

To describe the second way of thinking of a matrix-vector multipli-
cation, we are going to slightly abuse our notation. Even though we
just said an was a column of A, which is what we will do for the rest

54

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 8:27, September 13, 2020

of the course, note that we can also break up a matrix by along its
rows, which we will (just for now) denote by aT

1 ,a
T
2 , . . . ,a

T
M :

A =


— aT

1 —
— aT

2 —
...

— aT
M —

 .
We use a transpose when referring to the rows since normally am

always refers to a column vector. This way of writing A suggests an
alternative way to think about matrix-vector multiplication. That
is, each entry of Ax is the inner product between the rows of A and
the vector x: 

— aT
1 —

— aT
2 —
...

— vT
M —


 |x
|

 =


aT
1x
aT
2x
...

aT
Nx

 .

Matrix-matrix multiplication

Likewise, the product of an M ×N matrix A and a N × P matrix
B can be thought of in two different ways. The traditional way (how
you would compute the elements of AB one entry at a time) is as
a collection of the inner products between all of the rows of A and
all of the columns of B. If we continue to be a little loose with our
notation, we can visualize this as:

— aT
1 —

— aT
2 —
...

— aT
M —


 | | |
b1 b2 · · · bP
| | |

 =


aT
1 b1 aT

1 b2 · · · aT
1 bP

aT
2 b1 aT

2 b2 · · · aT
2 bP

...
aT
Mb1 a

T
Mb2 · · · aT

MbP

 .

55

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 8:27, September 13, 2020

However, just as with matrix-vector multiplication, there are alter-
native perspectives. We think of each column of AB as being the
result of a matrix-vector product that combines the columns of A:

A

 | | |
b1 b2 · · · bP
| | |

 =

 | | |
Ab1 Ab2 · · · AbP
| | |

 .
Similarly, we can also think of each row of AB as a linear combina-
tion of the rows of B:

— aT
1 —

— aT
2 —
...

— aT
M —

B =


— aT

1B —
— aT

2B —
...

— aT
MB —

 .
Finally, there is a fourth way to think of matrix-matrix multiplica-
tion, as a sum of the rank 1 matrices formed by taking the outer
product of the columns of A with the rows of B:

 | | |
a1 a2 · · · aN

| | |




— bT1 —
— bT2 —

...
— bTN —

 =
N∑
n=1

anb
T
n .

To see this, consider just a1 and what it contributes to AB. Each
column ofAB will potentially have some contribution from a1. Just
how much? Well, it’s the first row of B that will determine this for
each column. The same argument follows for each of the N columns
of A and rows of B.

56

Georgia Tech ECE 4803 Fall 2020; Notes by M. Davenport. Last updated 8:27, September 13, 2020

