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Solving systems of equations using least squares

One of the most common situations where least squares problems
arise is when we would like to “solve” systems of equations. If we
have M equations with N unknowns, we can write this as

y1 = A1,1x1 + A1,2x2 + · · · + A1,Nxn
y2 = A2,1x1 + A2,2x2 + · · · + A2,Nxn

...

yM = AM,1x1 + AM,2x2 + · · · + AM,Nxn.

Here, the ym and the Am,n are known, and we wish to solve for
x1, . . . , xn. We can write this much more compactly as

y = Ax (1)

where y ∈ RM , x ∈ RN , and A is an M ×N matrix.

Above I said we would like to “solve” this system – why the quotation
marks? Well, in general, finding an x that satisfies (1) exactly may
not be possible (when M > N). Alternatively, when M ≤ N there
may be multiple solutions, and we must decide which one to choose.

In general, given y, we want to find x in such a way that

1. when there is a unique solution, we return it;

2. when there is no solution, we return something reasonable;

3. when there are an infinite number of solutions, we choose one
to return in a “smart” way.

A natural way to approach the problem that addresses the first two
goals is to find an x such that the residual

r = y −Ax
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is “small.” To translate this into something actionable, we need a
mathematical notion of the “size” of the vector r. This is exactly
what a norm does for us. (See the technical details at the end of
these notes for a quick overview of vector spaces and norms.) While
there are many possible valid norms that we could use, the least
squares approach involves trying to minimize ‖r‖2, or equivalently,
‖r‖22, where ‖ · ‖2 is the standard Euclidean norm:

‖r‖2 =

√√√√ M∑
m=1

r2m.

Using the Euclidean norm (squared for convenience) to quantify our
notion of the size of the residual, we obtain the least squares approach
to solving the system in (1), that is, the optimization problem

minimize
x∈RN

‖y −Ax‖22. (2)

We will soon describe how to solve this problem in general, but first
we will consider a concrete example: linear regression.
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Example: Regression

A fundamental problem in data science that we have already encoun-
tered is to estimate a function given point samples (that are possibly
corrupted by noise). Recall that in this setting we observe pairs of
points (xm, ym) for m = 1, . . . ,M , and want to find a function f (x)
such that

f (xm) ≈ ym, m = 1, . . . ,M.

Of course, the problem is not well-posed yet, since without any con-
straints on f , there are any number of functions for which f (xm) =
ym exactly. Thus, we typically specify a class that f belongs to. One
way of doing this is by building f up out of a linear combination of
some set of functions φn(·):

f (x) =
N∑
n=1

αnφn(x).

The functions φn could be polynomials, sinusoids, or anything else
that might be appropriate given the application. We now fit our
function by solving for the “best” coefficients α1, . . . , αN . There is a
classical complexity versus robustness trade-off in choosing the num-
ber N of functions that we are going to use to fit the data – generally
speaking, letting N be large gives us a richer class of functions with
more expressive power, but leads to a harder estimation problem
requiring more data if we want our estimate to be accurate.

In the context of least squares, we will select the coefficients by opti-
mizing the sum of the square of the difference of the observed value
ym and its prediction using the coefficients α1, . . . , αn:(

ym −
N∑
n=1

αnφn(xm)

)2

.
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To see how this is related to the least squares framework first de-
scribed above, note that we can equivalently express our regression
problem by putting it in matrix form. We form the M ×N matrix
A and the N × 1 vector α:

A =


φ1(x1) φ2(x1) · · · φN(x1)
φ1(x2) φ2(x2) · · · φN(x2)

... . . . ...
φ1(xM) φ2(xM) · · · φN(xM)

 α =


α1

α2
...
αN


A maps a set of coefficients α ∈ RN to a set of M predictions for the
vector of observations y ∈ RM . Finding the α that minimizes the
squared error is now reduced to the standard least squares problem:1

minimize
α∈RN

‖y −Aα‖22.

We will soon discuss the solution for this problem in general, but
first let’s look at an important special case: suppose that φ1(x) = x,
and φ2(x) = 1. This corresponds to linear regression, so that our
prediction will be of the form f (x) = α1x+ α2. In this case, we can
write our optimization problem as

minimize
α1,α2∈R

M∑
m=1

(ym − α1xm − α2)
2. (3)

You hopefully recall from calculus that the minimum of a quadratic
function will occur when the derivative is zero. Since (3) is quadratic
with respect to both α1 and α2, we can find the minimum by taking

1This is exactly the same problem as before, but we have had to substitute
α for x to avoid confusion since x1, . . . , xM represent our sample locations.
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partial derivatives with respect to both variables, setting these equal
to zero, and solving for the minimizing α1 and α2.

Towards this end, let

g(α1, α2) =
M∑
m=1

(ym − α1xm − α2)
2

and note that

∂

∂α1

g(α1, α2) = −2
M∑
m=1

xm(ym − α1xm − α2)

∂

∂α2

g(α1, α2) = −2
M∑
m=1

(ym − α1xm − α2).

Setting these both equal to zero and rearranging yields

M∑
m=1

xmym = α1

M∑
m=1

x2
m + α2

M∑
m=1

xm

M∑
m=1

ym = α1

M∑
m=1

xm + Mα2.

We can write this as a 2× 2 system of equations in matrix form as[∑M
m=1 x

2
m

∑M
m=1 xm∑M

m=1 xm M

] [
α1

α2

]
=

[∑M
m=1 xmym∑M
m=1 ym

]
.
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Thus, we can obtain the solution to our optimization problem, which
we will denote by (α̂1, α̂2), by simply inverting this system, i.e., com-
puting [

α̂1

α̂2

]
=

[∑M
m=1 x

2
m

∑M
m=1 xm∑M

m=1 xm M

]−1 [∑M
m=1 xmym∑M
m=1 ym

]
.

We can express the solution to this system in closed form by explicitly
computing the inverse. Using the notation

x̄ =
1

M

M∑
m=1

xm ȳ =
1

M

M∑
m=1

ym,

the solution to this system reduces to[
α̂1

α̂2

]
=

1∑M
m=1 x

2
m −Mx̄2

[ ∑M
m=1 xmym −Mx̄ȳ

ȳ
∑M

m=1 x
2
m − x̄

∑M
m=1 xmym

]
.

Next time we will generalize this approach and show how to solve
the general least squares problem of (2).
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Linear Algebra Review I: Vector spaces and
norms

Linear algebra has become as basic and as applicable
as calculus, and fortunately it is easier.

– Gilbert Strang

Linear algebra is the branch of mathematics that deals with solving
systems of equations, with matrices and vectors being the key objects
of study. But what exactly is a vector? Two intuitive ways of think-
ing about a vector might come to mind. First, the kind of vector we
encounter in solving a system of equations is simply a list of numbers.
However, the other place you have likely encountered this idea is in
Euclidean geometry or physics, where a vector typically refers to a
(directed) line segment between two points. The fact that we can
use the same word for both of these concepts is chiefly due to the
revolutionary idea of René Descartes that we can describe geometry
via their coordinates, i.e., a list of numbers (a vector).

Descartes initiated what might be called the “algebraization” of ge-
ometry: if we can describe geometry in terms of vectors, then we can
reduce geometric problems to ones of algebra. Beginning in the 19th

century, mathematics began trending in a different direction, lead-
ing to a “geomertrization” of algebra: extending the equivalence
between geometry and vectors, we can apply geometric concepts to
lists of numbers. It is now common to apply geometric notions such
as length, distance, and angle from three-dimensional space to vec-
tors that live in much higher-dimensional (even infinite-dimensional)
spaces.
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In order to do this, mathematicians needed to form a more abstract
and precise definition of what we mean by a vector and the kind of
sets of vectors where such geometric notions make sense. The basic
building block here is the vector space. We will not worry too
much about defining this in all of its abstract glory, but informally, a
vector space S is a set of elements, called vectors, that has rules
for adding vectors and multiplying them by scalars.2

These rules mostly just capture familiar properties that we would
expect of addition (e.g., it is commutative and associative) and mul-
tiplication (e.g., distributive and associative). The most salient re-
quirement is that the set S of vectors must be closed under vector
addition and scalar multiplication, which simply means that adding
two vectors (or multiplying a vector by a scalar) will produce another
vector in S . This requirement is called linearity, since it implies that
we can take arbitrary linear combinations of vectors without produc-
ing nonsense, and as a result vector spaces are also often known as
linear vector spaces or linear spaces.

The simplest example of a vector space, and the most important
one for this course, is RN , i.e., the set of vectors consisting of lists
of N real numbers, with the usual notions of vector (element-wise)
addition and scalar multiplication (with real-valued scalars). To see
the value of this more abstract definition, note that the following are
also valid vector spaces:

• The set of infinite-length sequences.

• The set of polynomials of degree p.

• The set of continuous functions on the real line.

• The set of functions bandlimited to Ω.
2Most commonly, a scalar simply refers to a real or complex number.
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An important detail to keep in mind is that not all sets of vectors
actually qualify as a vector space – typically because the set fails
to be closed. For example, the set of vectors in R2 that live within
the unit circle is not a vector space. To see why not, think about
whether all linear combinations of such vectors will also live within
the unit circle.

While the definition of a vector space described above generalizes
some of our intuition from Euclidean space, we gain much more by
also defining a norm together with our vector space. A norm allows
us to talk about the length of a vector or the distance between two
vectors.3

Definition. A norm ‖ · ‖ on a vector space S is a mapping

‖ · ‖ : S → R

with the following properties for all x,y ∈ S:

1. ‖x‖ ≥ 0, and ‖x‖ = 0 ⇔ x = 0.

2. ‖x + y‖ ≤ ‖x‖ + ‖y‖ (triangle inequality)

3. ‖ax‖ = |a| · ‖x‖ for any scalar a (homogeneity)

Other related definitions:

• The length of x ∈ S is simply ‖x‖ .

• The distance between x and y is ‖x− y‖.
• A vector space in which we have defined a norm is called a

normed vector space.

3A fancy mathematical way to say this is that a norm adds a layer of topo-
logical structure on top of the algebraic structure defining a vector space.
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Examples:

1. S = RN ,

‖x‖2 =

(
N∑
n=1

|xn|2
)1/2

This is called the “`2 norm”, or “standard Euclidean norm”

In R2:

x

y

‖x−y‖2 =
√

(x1 − y1)2 + (x2 − y2)2

2. S = RN

‖x‖1 =
N∑
n=1

|xn|

This is the “`1 norm” or “taxicab norm” or “Manhattan norm”

In R2:

x

y

‖x− y‖1 = |x1 − y1| + |x2 − y2|
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3. S = RN

‖x‖∞ = max
n=1,...,N

|xn|

This is the “`∞ norm” or “Chebyshev norm”

In R2:

x

y

‖x−y‖∞ = max (|x1 − y1|, |x2 − y2|)

4. S = RN

‖x‖p =

(
N∑
n=1

|xn|p
)1/p

for some 1 ≤ p <∞

This is the “`p norm”.

5. The same definitions extend straightforwardly to infinite se-
quences:
S = sequences (discrete-time signals) x[n] indexed by the in-
tegers n ∈ Z

‖x[n]‖p =

( ∞∑
n=−∞

|x[n]|p
)1/p

It is easy to verify that the set of all discrete-time signals that
have ‖x‖p < ∞ is a normed vector space; we call this space
`p.
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6. S = continuous-time signals on the real line

‖x(t)‖2 =

(∫ ∞
−∞
|x(t)|2 dt

)1/2

This is called the L2 norm.4 In engineering, we often refer to
‖x(t)‖22 as the energy in the signal.

Similarly,

‖x(t)‖p =

(∫ ∞
−∞
|x(t)|p dt

)1/p

and

‖x(t)‖∞ = sup
t∈R
|x(t)|, where sup = “least upper bound”

Note that we are also using ‖ · ‖p for the discrete version of
these norms, but I do not expect this will cause any confusion.

The set of continuous-time signals that have finite Lp norm are
a normed vector space; we call this space Lp(R).

4The L is for Lebesgue, the mathematician who formalized the modern
theory of integration in the early 1900s.
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