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The field of data science revolves around a growing body of tools
whose focus is the extraction of info information from data. In this
course we will explore the mathematical foundations of this field.

Modern data science is built on two fundamental pillars: probabil-
ity and optimization. Probability arises naturally when dealing
with data because it provides us with principled ways to model and
reason about uncertainty. This is critical, because no matter how
well we understand a problem – no matter how good of a mathemat-
ical model we develop – when we have to deal with real-world data,
our models can almost never predict this data exactly. This could
be because of modelling error, measurement error, or both. In any
case, probability provides the mathematical framework we need to
handle such errors in a careful manner. However, probability on its
own only gives us good ways to model our data. When it comes time
to extract some kind of information from our data, we will see that
most often, this can be posed as an optimization problem. We will
soon be more formal about what this means, but a useful informal
definition is something along the lines of “a problem where we wish
to select the best element from some set of possibilities.”

Let’s give a concrete example of this that demonstrates a possible
use of optimization in a real problem that also illustrates that data
science has been influencing the world for perhaps longer than you
might first think. A classic result in physics due to Galileo Galilei is
that an object in free-fall experiences uniform acceleration in time.
Specifically, the notion of uniform acceleration means that the change
in speed should be linearly proportional to the amount of time that
has passed, and as a consequence that the distance an object falls
should be proportional to the square of the amount of time that has
passed. In 1638, Galileo argued in his book Dialogues Concerning
Two New Sciences that this ought to be the case on philosophical
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grounds (by appealing to Aristotle). But Galileo went further: he
argued that one can experimentally verify that bodies in nature really
do in fact experience uniform acceleration!

Galileo provided a remarkably clear description of how this was done.
He constructed an inclined ramp with marks indicating the points
1
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, and all the way down the ramp. He then repeatedly

rolled a ball down the ramp, recording the amount of time required
for the ball to reach each point (as determined using a water clock
that measured the volume of water dripping out of a small spout).
Below I illustrate the results from a contemporary recreation of this
experiment.1
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1S. Straulino. “Reconstruction of Galileo Galilei’s experiment: The inclined
plane.” Physics Education, 43(3) 316, 2008.
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We can conclude from visual inspection of the results that the data
clearly support Galileo’s claim. However, note that there is not a
perfect agreement between the data and the linear fit to the data
that I have also included in the figure. This might raise many ques-
tions, including: How did I actually decide on the slope of this linear
fit? Is there any sense in which one could determine the “best” fit?
While not the approach taken by Galileo, this leads us directly to an
illustration of the role played by optimization in data science.

In particular, suppose we observe pairs of points (xm, ym) for m =
1, . . . ,M , and want to find a function f (x) of the form f (x) = αx
such that

f (xm) ≈ ym, m = 1, . . . ,M.

To pose this as an optimization problem, we must quantify what we
mean by “≈”. There are many choices here, but a particulary com-
mon one is to measure our “approximation error” using the square
of the difference between the observed value ym and its prediction
using f (xm), averaged over all the observations. Mathematically, we
can write this as

1

M

M∑
m=1

(ym − f (xm))2,

or in the case where f (x) is of the form f (x) = αx,

1

M

M∑
m=1

(ym − αxm)2. (1)

We are finally ready to pose this as an optimization problem: if we
would like to obtain the “best” linear fit to our data in the sense of
squared error, we need to choose α to minimize (1). We can write
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this as

minimize
α∈R

1

M

M∑
m=1

(ym − αxm)2. (2)

You might already see how one might go about solving this, but
for now it is enough to note that there are efficient ways to solve
problems of this form, and this is precisely what I did in the figure
above. While a simple example, much of modern data science is just
an elaboration on solutions to this basic problem.

Mathematical optimization

We have just encountered our first optimization problem of the course.
Optimization problems arise any time we have a collection of elements
and wish to select the “best” one (according to some criterion). The
process of casting a real world problem as being one of mathematical
optimization consists of three main components

1. a set of variables, often called decision variables, that we
have control over;

2. an objective function that maps the decision variables to
some quality that we want to maximize (goodness of fit, profit,
etc.) or some cost that we want to minimize (error, loss, etc.);
and

3. a constraint set that dictates restrictions on the decision
variables imposed by physical limitations, budgets on resources,
design requirements, etc.

In its most general form, we can express such an optimization prob-
lem mathematically as

minimize
x

f (x) subject to x ∈ X , (3)
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where f : X → R is our objective function and X is our constraint
set. Compare this with the problem described above in (2).

In order to solve this optimization problem, we must find an x̂ ∈ X
such that

f (x̂) ≤ f (x) for all x ∈ X . (4)

We call an x̂ satisfying (4) a minimizer of f in X , and a solution
to the optimization problem (3).

By convention, we will focus only on minimization problems, noting
that x̂maximizes f in X if and only if x̂ minimizes −f in X — thus
any maximization problem can be easily turned into an equivalent
minimization problem.

There are a number of fundamental questions that arise when consid-
ering an optimization problem of the form (3). Our primary interest
will be in developing efficient procedures for computing a/the solu-
tion to (3). However, we will also need to address more fundamental
questions along the way, such as when we can guarantee that a solu-
tion even exists, and if so, when we can expect it to be unique. We
will begin by exploring these questions in the context of a concrete
problem that is ubiquitous in data science: least squares optimiza-
tion.
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