
ECE 4803, Fall 2020

Homework #6

Due Tuesday, October 20, at 11:59pm

1. Prepare a one paragraph summary of what we talked about in class since the last assignment.
I do not want just a bulleted list of topics, I want you to use complete sentences and establish
context (Why is what we have learned relevant? How does it connect with other classes?).
The more insight you give, the better.

2. Consider the function
f(x) = log (1 + eax) ,

where a is a constant.

(a) Show that f is not strongly convex. [Hint: Recall the second derivative computed in
homework 1.]

(b) Determine a value of M for which f is M -smooth.

(c) Now consider
f̃(x) = log (1 + eax) + δx2,

where δ > 0 is a constant. Now show that f̃ is both strongly convex and M -smooth
(and give the associated constants m and M).

3. Logistic regression is a simple, but surprisingly powerful, tool for solving a fundamen-
tal problem in machine learning: learning a classifier that can distinguish between two
classes from a set of training data. Specifically, suppose that we have a set of training data
(x1, y1), . . . , (xN , yN ), where each xn ∈ RD is a “feature vector” and each yn ∈ {0, 1} is a
“label” that indicates which of two classes xn corresponds to. The goal in learning a classifier
is to find a function h such that h(x) predicts the correct label y for x that we have never
seen before. We can do this by trying to learn a function h that gives us h(xn) = yn on (most
of) the training set. In this problem you will explore this idea and implement it on a simple
example.

Consider the logistic function

g(t) =
1

1 + e−t
.

Note that g(t) is always a number between 0 and 1. In logistic regression, we set t = aTx+ b,
where a ∈ RD and b ∈ R, so that for any x we can compute g(aTx + b), returning a
number between 0 and 1. Our goal is to learn the parameters a and b so that we can
interpret g(aTx + b) as an estimate of the probability that x belongs to class 1 (and hence,
1 − g(aTx + b) is the probability that x belongs to class 0). To form a classifier, we then
simply compare g(aTx+ b) to a threshold in order to estimate the label based on which one
has a higher predicted probability, i.e.,

h(x) =

{
1 if g(aTx+ b) ≥ 1

2 ,

0 if g(aTx+ b) < 1
2 .
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(a) Show that h(x) can equivalently be written as

h(x) =

{
1 if aTx+ b ≥ 0

0 if aTx+ b < 0.

(b) Draw a picture illustrating the set {x ∈ R2 : aTx+ b ≥ 0} for

a =

[
1
1

]
b =

1

2
.

(c) The key question in fitting a logistic regression model is deciding on how to set a and b
based on the training data. To see how this is done, note that if yn = 1, we would like
to have g(aTxn + b) ≈ 1, in which case

log(g(aTxn + b)) ≈ 0.

Similarly, if yn = 0, then we would like g(aTxn+b) ≈ 0, or said differently, 1−g(aTxn+
b) ≈ 1, in which case

log(1− g(aTxn + b)) ≈ 0.

Note that in both cases, the terms on the left-hand side are always negative, so that
to make them ≈ 0 corresponds to making these terms as large as possible. Combining
these desired criteria together, we can express the problem of fitting a and b as

maximize
a,b

∑
n:yn=1

log(g(aTxn + b)) +
∑

n:yn=0

log(1− g(aTxn + b)).

It is somewhat more convenient to re-express this as the equivalent problem:

maximize
a,b

N∑
n=1

yn log(g(aTxn + b)) + (1− yn) log(1− g(aTxn + b)).

Show that, by plugging in the formula for g, this problem reduces to

maximize
a,b

N∑
n=1

yn(aTxn + b)− log(1 + ea
Txn+b).

(d) We would now like to use an iterative algorithm like gradient descent to solve this
optimization problem. To do this, we will need to calculate the gradient. Note that if
we use the notation

x̃n =

[
xn

1

]
θ =

[
a
b

]
,

then we can re-write our objective function as

f(θ) =

N∑
n=1

ynθ
Tx̃n − log(1 + eθ

Tx̃n).

With this notation, compute a formula for the gradient ∇θf(θ) and the Hessian ma-
trix D2

f (θ). [Hint: You may use the answers from homework 1 to avoid any actual
computation here, but be careful as the notation in this problem is a little different...]
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(e) Do you think f(θ) is M -smooth for some finite value of M? Do you think f(θ) is strongly
convex? (You do not have to calculate M or m here.)

(f) Implement a solver for estimating θ using gradient descent. Test your implementation
on the dataset produced by the following code:

import numpy as np

from sklearn import datasets

np.random.seed(2020) # Set random seed so results are repeatable

x,y = datasets.make_blobs(n_samples=100,n_features=2,centers=2,cluster_std=6.0)

Use an initial guess of θ(0) = 0. To begin, consider a fixed step size of α ≈ 0.001
(although you should feel free to play around with α a bit). Report how many iterations
your algorithm takes to converge. Remember that you are trying to minimize −f(θ). If
your algorithm is not converging, a sign error is a likely culprit.

(g) Now implement the backtracking line search strategy described in the notes, and create
a modified version of gradient descent in which you update α at each iteration using a
line search. Experiment with the c and ρ. Report the c and ρ that work best, and how
many iterations gradient descent requires when using backtracking.

(h) Next implement a solver using the “heavy ball method”. First try setting α ≈ 0.001
and β ≈ 0.95 and run the code with these fixed step sizes. Play around with α and β to
see if you can get any improvement. Report the values of α and β that work best, and
how many iterations the method requires. Then try using backtracking (using the same
parameters as before) to adjust α at each iteration (you can leave β fixed here). Now
how many iterations are required?

(i) Next implement a solver using “Nesterov’s optimal method”. Try both using a fixed
stepsize of α ≈ 0.001 as well as backtracking. Use the rule of thumb β = (k−1)/(k+ 2).
Report how many iterations are required for both versions.

(j) Finally, implement a solver using Newton’s method. Report the number of iterations
required.
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