
ECE 4803, Fall 2020

Homework #4

Due Tuesday, September 29, at 9:30am

1. Prepare a one paragraph summary of what we talked about in class since the last assignment.
I do not want just a bulleted list of topics, I want you to use complete sentences and establish
context (Why is what we have learned relevant? How does it connect with other classes?).
The more insight you give, the better.

2. Recall the Tikhonov regularized least squares problem

minimize
x∈RN

‖y −Ax‖22 + δ‖x‖22.

In this problem we will justify the formulas for the solution to this problem given on page 48
in the notes.

(a) Show that the Tikhonov regularized least squares problem can be rewritten in the format
of a standard least squares problem

minimize
x∈RN

‖ỹ − Ãx‖22

for an appropriate choice of Ã and ỹ.

(b) Derive the solution x̂ = (ATA + δI)−1ATy from the formula for the solution to the
standard least squares problem together with the Ã and ỹ computed in part (a). [Hint:
a useful fact here is that if

Ã =

[
A
B

]
then

Ã
T
Ã = ATA + BTB.

You do not need to prove this, but you should convince yourself that it is true.]

(c) Derive the formula x̂ = V (Σ2 + δI)−1ΣUTy by plugging A = UΣV T into the formula
in part (b). In this problem, assume that R = N .1 [Hint: recall that if A,B,C are
invertible matrices, then (ABC)−1 = C−1B−1A−1.]

(d) In the notes I also claimed that another formula for the solution to the Tikhonov reg-
ularized least squares problem was x̂ = AT(AAT + δI)−1y. Show that by plugging
A = UΣV T, you arrive at the same formula as in part (c). In this problem, assume
that R = M .

1This result is actually true for any M , N , and R, but I’m only asking you to prove it in the full-rank case because
it’s a slightly simpler argument. The fact that this makes the argument is a hint. What extra fact about the SVD
holds when R = N?

1

Last updated 14:35, September 24, 2020



3. In the notes we showed that when using the truncated SVD, we could decompose the error
that we incur as a result of noise into “noise error” and “approximation error” terms of the
form

x̂trunc − x̂clean =

R′∑
r=1

1

σr
〈e,ur〉vr +

R∑
r=R′+1

−〈x,vr〉vr.

Show that a similar decomposition is possible for Tikhonov regularization. Specifically, derive
an expression of the form

x̂tik − x̂clean =

R∑
r=1

〈e,ur〉vr +

R∑
r=1

〈x,vr〉vr.

4. In this problem you will write Python functions that implement two versions the gradient
descent for the least squares problem. Each function should take as input a generic matrix
A and vector y, an initial guess x(0), and stopping criteria (I would include both a tolerance
ε as well as a maximum number of iterations, just in case). While you wouldn’t normally
save the results of each iteration, to help you understand what is going on, your code should
return an array containing the sequence of iterates x(0),x(1), . . ..

As I said above, I would like you to implement two versions. One version should be what was
described in the notes (you can implement either version – the problems we will be working
on here are not going to be big enough for the computational difference to be noticeable).
The other version should be gradient descent with αk set to a fixed constant. In the context
of least squares, we can work out analytically what a good value for each step size is, but we
will see later that in many optimization problems, finding such an analytical solution may
not be possible. Here we will see what kind of impact this can have. Note that your version
with a fixed step size will need an additional input (the step size α).

(a) First let’s test both versions on the simplest possible least squares problem I can think
of

A =

[
1 0
0 1

]
y =

[
1
1

]
.

Hopefully just by looking at this problem you can see that the solution to

minimize
x∈RN

‖y −Ax‖22

will just be x̂ = y = [1, 1]T. Verify that this is indeed what both versions of your code
produces when using an initial estimate of x(0) = 0. Report how many iterations are
required for both versions, reporting the results for several different values of the step
size in the fixed step size version. What step size gives you the best performance here?

(b) Let’s make the problem a little more interesting and consider

A =

[
1 0.99

0.99 1

]
y =

[
1.99
1.99

]
.

It may not be quite as obvious this time, but it should be clear that in this case we
still have a solution of [1, 1]T. Compute the condition number κ(A). Based on our
discussion in class, what does this tell us about how many iterations we might expect

2

Last updated 14:35, September 24, 2020



to need compared to the previous problem? Try out both versions of the algorithm and
report how many iterations are required. If the answer is not what you expected, can
you hypothesize why?

(c) Let’s consider one more tweak of this problem:

A =

[
1 0.99
1 1.01

]
y =

[
1.99
2.01

]
.

The solution remains [1, 1]T. Again, compute the condition number κ(A), and try out
both versions of the algorithm, reporting how many iterations are required. What is
different from the previous problem? (If you are struggling to explain what is happening,
it may help to plot the iterates together with a contour plot of the least squares objective
function, and/or to experiment with different starting points for x(0).

(d) In part (c), you may need to set the tolerance parameter ε to be very small in order to
avoid having the algorithm terminate at a point x(k) where x(k) is still quite far from
the true solution. Explain why this is necessary?

5. Gradient descent can also be used to solve Tikhonov regularized least squares problems.
Consider the least squares problem defined by

A =


10000 10001
10001 10002
10002 10003
10003 10004
10004 10005

 y =


20001
20003
20005
20007
20009

 .

This is a somewhat ridiculous generalization of the previous example from part (c) of the
previous problem, and the optimal solution to the associated least squares problem is again
x? = [1, 1]T

(a) What is the condition number κ(A)? Do you think we should even try to apply our
gradient descent code to this?

(b) Do it anyway. Using the version of your code that automatically adapts the step size,
try running your code and comment on what happens. Does it converge? If so, to what?
If not, what is the output when the iteration limit is reached?

(c) Now consider the Tikhonov regularized version of the problem. One way to implement
a gradient descent solver for this problem is by treating it as a modified version of least
squares as in problem 2. Do this for a few values of δ. For each, report the condition
number of Ã, the number of iterations required for convergence, and the error ‖x̂−x?‖2.
What value of δ works best?

(d) Compare the results from Tikhonov regularization to the truncated SVD. (Instead of
the regularization parameter δ, you must now choose the truncation level R′, but here
you don’t have a lot of wiggle room for this). In this case, which approach seems to
work better? Can you explain why? (Think about the relationship between x? and the
singular vectors of A.)

3

Last updated 14:35, September 24, 2020


