Examples of constrained convex optimization
problems

We will close our initial discussion of constrained convex optimization
with a very brief tour of common categories of constrained convex
optimization problems, giving a few practical examples where each
arises. This discussion is by no means exhaustive, but is merely
intended to help you to have some concrete examples in the back of
your mind where the techniques we have developed can be applied.

Linear programming

Perhaps the simplest constrained convex optimization problem to
write down (although not necessarily the easiest to solve) is a linear
program (L.P). An LP minimizes a linear objective function subject
to multiple linear constraints:

minimize ¢’z subject to a?nm <b,, m=1,..., M.
£

The general form above can include linear equality constraints aj @ =
b; by enforcing both @] < b; and (—a;) @ < b;. We can also write
the M constraints compactly as Ax < b, where A is the M x N
matrix with the a! as rows.

Linear programs do not necessarily have to have a solution; it is
possible that there is no @ such that Ax < b, or that the program
is unbounded in that there exists a series x1, @, ..., all obeying
Az, < b, with lim etz — —o0.

There is no formula for the solution of a general linear program. For-
tunately, there exists very reliable and efficient software for solving
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them. The first LP solver was developed in the late 1940s (Dantzig’s
“simplex algorithm”, which is a clever iterative descent algorithm
tailored to the LP setting), and now LP solvers are considered a ma-
ture technology. If the constraint matrix A is structured, then linear
programs with millions of variables can be solved to high accuracy
on a standard computer.

Linear programs are a very important class of optimization prob-
lems. However, if a single constraint (or the objective function) are
nonlinear, then we move into the much broader class of nonlinear
programs, which has really been the main focus of this course.

Example: Chebyshev approximations

Suppose that we want to find the vector  so that Aa does not vary
too much in its maximum deviation:

I . . T — .. . .
minimize mfrllaxM\ym a, x| minimize |y — Ax|| -

This is called the Chebyshev approximation problem.
We can solve this problem with linear programming. To do this, we

introduce the auxiliary variable © € R — it should be easy to see
that the program above is equivalent to

minimize v subject to v, —a,.x < u
zcRN, ueR
Y — Q) T > —1U
m=1,..., M.

To put this in the standard linear programming form, take
Rk ;10 ;| —A —1 ]
ot o1 R v R | R
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and then solve

.. . . / /
minimize ¢’z subject to A’z < b,
ZGRN+1

One natural application of this arises in the context of filter design.
The standard “filter synthesis” problem is to find an finite-impulse
response (FIR) filter whose discrete-time Fourier transform (DTFT)
is as close as possible to some desired H*(w). If we measure “close-
ness’ in terms of the maximum deviation, the result is called an
“equiripple design” since the error in the solution will tend to have
ripples a uniform distance away from the ideal.

We will not go through the derivation in detail here, but I will note
that Georgia Tech’s very own Jim McClellan worked all of this out
in the early 1970s with his advisor Tom Parks, developing the now
ubiquitous Parks-McClellan filter design algorithm.

Quadratic programming

Let us briefly return to our standard least squares problem. As we
have seen before, this is equivalent to the problem of

minimize ' A' Az — 2yT Ax.
xeRN

Suppose you now wanted to enforce some additional structure on cx.
For example, you might have reason to desire a solution with only
non-negative values. In adding such a constraint, we arrive at an
example of a quadratic program (QP).

A QP minimizes a quadratic functional subject to linear constraints:

minimize ' Hx + c'x, subject to Az < b.

31

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 20:21, November 8, 2021



If H is symmetric positive semidefinite (i.e., symmetric with nonneg-
ative eigenvalues), then the program is convex. If H has even a single
negative eigenvalue, then solving the program above is NP-hard.

QPs are almost as ubiquitous as LPs; they have been used in finance
since the 1950s (see the example below), and are found all over oper-
ations research, control systems, and machine learning. As with LPs,
there are reliable solvers and can be considered a mature technology.

A quadratically constrained quadratic program (QCQP)
allows (convex) quadratic inequality constraints:

minimize ' Hx + c'z, subject to ' H,,x +c'x < b,
m=1,..., M.
This program is convex if all of the H,, are symmetric positive

semidefinite; we are minimizing a convex quadratic functional over a
region defined by an intersection of ellipsoids.

Example: Portfolio optimization

One of the classic examples in convex optimization is finding invest-
ment strategies that “optimally”! balance the risk versus the return.
The following quadratic program formulation is due to Markowitz,
who formulated it in the 1950s, then won a Nobel Prize for it in 1990.

We want to spread our money over N different assets; the fraction of
our money we invest in asset n is denoted x,,. We have the immediate

44

T put “optimally” in quotes because, like everything in finance and the
world, this technique finds the optimal answer for a specified model. The
big question is then how good your model is ...
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constraints that
N
Zaznzl, and 0<z,<1, forn=1,...,N.
n=1

The expected return on these investments, which are usually calcu-
lated using some kind of historical average, is p1, ..., uy. The u,
are specified as multipliers, so u, = 1.16 means that asset n has a
historical return of 16%. We specify some target expected return p,

which means
N
> T = p.
n=1

We want to solve for the x that achieves this level of return while
minimizing our risk. Here, the definition of risk is simply the variance
of our return — if the assets have covariance matrix R, then the risk
of a given portfolio allocation x is

M M
Risk(z) = ' Rx = Z Z Ropn T,

m=1 n=1
Our optimization program is then”

minimize &' Rx
xXr

subject to plx > p
1'x =1
0<x<1.
This is an example of a QP with linear constraints. It is convex since

the matrix R is a covariance matrix, and so by construction it is
symmetric positive semidefinite.

*Throughout these notes, we will use 1 for a vector of all ones, and 0 for a
vector of all zeros.
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Example: Support vector machines

As we have already seen, SVMs are a classical approach for designing
a classifier in machine learning and can be expressed as

minimize |w||5 subject to (xw + b)y; > 1 for all 4.,

i

This is another example of a QP with linear constraints.

Second-order cone programs

A second-order cone program (SOCP) is an optimization prob-
lem where the constraint set forms what is called, perhaps unsurpris-
ingly, a second-order cone. The canonical example of a second-order
cone is the set:

{(z,t),z eRY L ER: ||z|, < t}.

This is a subset of R¥*1. Here is an example in R?:

t

>
‘/0 11
L9
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The standard form of a SOCP is

minimize e¢'x
xTr

subject to ||Anx + byl <cix+d,, m=1,...,M.

We have a linear objective function and constraints that require (y, t)
to lie inside the second-order cone, where y and ¢ are allowed to be
any affine function of x.

SOCPs turn out to be much more common than you might initially
expect. First, it is not hard to show that an LP is also a SOCP. It
turns out that QPs and (convex) QCQPs are also SOCPs; so we can
think of SOCPs as a generalization of what we have already seen.
However, the class of possible SOCPs also includes many optimiza-
tion problems beyond what we have seen so far.

Example: Generalized geometric medians

Suppose that we have M points py, ..., P, € RY and that we would
like to find the “center” of this set of points. The geometric median
is the point @ that minimizes the sum (or equivalently, average) of
the distances to the points py,...,p,;. This can be posed as the
optimization problem

M
minimize Z |l — p,,]|2-
m=1
In the case where N = 1, this is equivalent to the standard median.
The special case of M = 3 points in a dimension N > 2 was first
considered by Pierre de Fermat, with Evangelista Torricelli providing
a simple geometric solution in the 17 century. In general, however,
there is no closed-form solution to this problem.
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It is relatively straightforward to show that this problem can be cast
as a SOCP. Specifically, it should be clear that it is equivalent to:

M

minimize t
x,t
m=1

subject to || — p,,||2 < tm, m=1,..., M.

A slight variation on this problem is to try to minimize the maximum
distance from x to the p,:

minimize  max__||x — p,, ||
€T

This too has a simple formulation as a SOCP:
minirtnize t

subject to || —p,lle <t, m=1,..., M.

Semidefinite programs

So far we have typically been looking at problems where we are
optimizing over vectors £ € RY. In many important applications,
our decision variables are more naturally represented as a matrix X.
In such problems, it is common to encounter the constraint that this
matrix X must be positive semidefinite. When the objective function
is linear and we have affine constraints, this is called a semidefinite
program (SDP).

To state the standard form for an SDP, it is useful to introduce some
notation. First, we will let SY denote the set of N x N symmetric
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matrices, and S the set of symmetric positive semidefinite matrices.
Furthermore, we let

(Y, X) = trace(Y ' X)

denote the (trace) inner product between a pair of matrices.” With
this notation in hand, the standard form for an SDP is given by

minimize (C, X)
subject to (A, X) <b,, m=1,....M
X e Sy,

where C, A,..., Ay € S.

SDPs are the broadest class of convex problems that we will consider
in this course. All of the problems we have looked at so far (LPs,
QPs, SOCPs) can be shown to be special cases of SDPs.

Example: Bounding portfolio risk

Let us briefly return to our previous example or portfolio optimiza-
tion. Before we assumed that we knew the expected returns and the
covariance matrix R for the different assets under consideration, and
our goal was to determine the optimal allocation. Here we consider
a slightly different problem. Suppose that we already have a fixed
allocation @ across the different assets, but rather than knowing the
covariance matrix R exactly, we assume that we have only an esti-
mate of R. A natural question is whether we can quantify how large
the true risk of our portfolio might be in such a case.

3This is simply the inner product that would result from reshaping X and
Y into vectors and applying the standard inner product.
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Suppose that we have confidence intervals on how accurate our co-
variance estimate is of the form

For a given portfolio &, we can compute the maximum possible risk
of that portfolio that is consistent with the given bounds via the
following SDP:

maxli%mize ' Rx
subject to L., < Ry < Uy, myn=1,..., N
Re S

We have to enforce the constraint that R € 8% because R must be
a covariance matrix, and ignoring this constraint would yield a risk
that is not actually achievable.
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