
Algorithms for constrained optimization

There are many, many constrained optimization algorithms, each
tuned to the particulars of different classes of problems. We will
look at the basics that underlie some of the more modern techniques.
We will see that the concept of duality both helps us understand how
these algorithms work, and gives us a way of determining when we are
close to the solution. We will describe several techniques. Nearly all
of these ultimately work by replacing the constrained program with
an unconstrained program (or a series of unconstrained programs).

Eliminating equality constraints

The first approach is not so much an algorithm as a “trick” that lets
us sometimes avoid even thinking about the constraints. Convex op-
timization problems with equality constraints1 can always be written
as optimization problems without equality constraints, and if there
are no inequality constraints then the new program is unconstrained.
To see this, suppose we are solving

minimize
x∈RN

f (x) subject to Ax = b.

Note that we can decompose any feasible x as x = x0 + h, where
x0 satisfies Ax0 = b and h ∈ Null(A). Suppose that Null(A) is K-
dimensional and has basis Q. Then we can write any h ∈ Null(A)
as h = Qw and can re-write the constrained problem as

minimize
w∈RK

f (x0 +Qw).

Sometimes this method can be very helpful, but note that computing
x0 and Q could potentially be expensive.
1Note that, in order for the optimization problem to be convex, any equality
constraints must be affine, i.e., of the form Ax = b.
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Projected gradient descent

Now suppose that we wish to solve the

minimize
x∈C

f (x)

where f is a differentiable convex function and C is a convex set in
RN . Another way to express this is as the unconstrained problem

minimize
x∈RN

f (x) + IC(x), (1)

where

IC =

{
0 if x ∈ C,
∞ otherwise,

denotes the indicator function for the set C. This wouldn’t seem
to do very much for us – since IC(x) is non-differentiable, we cannot
apply gradient-based methods to solving (1).

However, we have encountered some algorithms for minimizing nons-
mooth convex functions. One that is particularly well-aligned with (1)
is the proximal gradient method. Recall that proximal gradi-
ent method applies when our objective function consists of the sum
of a smooth term (in this case, f ) and a nonsmooth term (in this
case, IC), resulting in the core iteration of

xk+1 = proxαkIC(xk − αk∇f (xk)).

This would yield a tractable algorithm with provable guarantees if
we can compute proxαkIC . So what does proxαkIC look like? Note that

proxαkIC(z) = arg min
x∈RN

(
IC(x) +

1

2αk
‖x− z‖22

)
= arg min

x∈C
‖x− z‖22

= PC(z),
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where PC(z) denotes the projection of z onto the set C. Note that
this holds for any αk > 0.

Thus, the core iteration of the proximal gradient method is equivalent
to

xk+1 = PC(xk − αk∇f (xk)).

That is, at each iteration we take a gradient step on f and then
re-project onto the constraint set. Notice that for any k ≥ 1, we are
always guaranteed that xk is feasible.

This algorithm is usually called projected gradient descent. It
is a very simple (but often effective) method for solving constrained
optimization problems when the projection onto the constraint set C
can be computed efficiently. Note, however, that this is not always
the case – sometimes computing this projection itself requires solving
a challenging optimization problem.

Example: Least-squares with positivity constraints

Suppose we want to solve

minimize
x∈RN

1

2
‖y −Ax‖22 subject to x ≥ 0.

This is a case where the projection onto the constraint set is relatively
simple. It is easy to argue that the projection onto the set of all
positive vectors is to simply just set all of the negative entries to
zero. The projected gradient descent iteration is then

xk+1 =
(
xk + αkA

T(y −Axk)
)
+
,

where

(z)+[i] =

{
z[i], z[i] ≥ 0,

0, z[i] < 0.
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Barrier methods

Another popular and even more flexible approach are barrier meth-
ods. These can be thought of as again replacing our constrained
problem with the unconstrained one in (1), but rather than attempt-
ing to minimize (1) directly, we instead solve a slight perturbation of
this problem. In particular, we replace the indicator function IC with
some function b such that b(x) is finite for any x ∈ C and b(x)→∞
as x approaches the boundary of C.

To make this concrete, consider the constrained program

minimize
x

f (x) subject to gm(x) ≤ 0, m = 1, . . . ,M.

In a barrier method we replace this with the unconstrained program

minimize
x

f (x) +
M∑
m=1

B(gm(x)),

where B(x) is finite for x < 0 and B(x) → ∞ as x → 0 from the
left. Again, unless B is the indicator function, the new program is
an approximation to the original.

An interesting choice is B(x) = −1
τ

log(−x). This particular barrier
function has the properties:

• You can analyze the number of Newton iterations needed for
convergence for many f of interest.

• The solution2 x?(τ ) of

minimize
x

τf (x)−
M∑
m=1

log(−gm(x))

2We have multiplied the objective by τ to make some of what follows a little
easier to express.
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can be used to generate a dual-feasible point, and hence a
bound on how close we are to the solution.

To appreciate the second point above, we start by taking the gradient
of the objective function above and setting it equal to zero. We see
that

τ∇f (x?(τ )) +
M∑
m=1

− 1

gm(x?(τ ))
∇gm(x?(τ )) = 0.

So if we take

λ?m(τ ) = − 1

τgm(x?(τ ))
, m = 1, . . . ,M,

we have λ?m(τ ) ≥ 0 and

f (x?(τ )) +
M∑
m=1

λ?m(τ )∇gm(x?(τ )) = 0.

Since x?(τ ) is primal feasible, the only KKT condition we are missing
is complementary slackness – we have replaced the condition

λ?mgm(x?) = 0, with λ?m(τ )gm(x?(τ )) = −1/τ.

So if we set τ to be increasingly large, we obtain points that satisfy
an increasingly tight approximation to the KKT conditions.

With this choice of λ?(τ ), we can also easily compute the dual of the
original program:

d(λ?(τ )) = min
x∈RN

(
f (x) +

M∑
m=1

λ?m(τ )gm(x)

)

= f (x?(τ )) +
M∑
m=1

λ?m(τ )gm(x?(τ ))

= f (x?(τ ))−M/τ.
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Hence, we know that if x? is a solution to the original program, then

f (x?(τ ))− f (x?) ≤ f (x?(τ ))− d(λ?(τ )) ≤ M/τ.

Thus, we know that solving the log-barrier problem gets us within
M/τ of the optimal of the original primal objective.

One interesting theoretical result that we will not prove here is that,
with a reasonable way of adjusting τ (multiplying it by 10 at every
iteration, for example), the number of log-barrier iterations to make
the value of the barrier functional f (x?(τ )) agree with the minimal
value f (x?) to the original constrained problem to some precision.
The upshot is that there is a very close match after∼

√
M iterations.

This means that in theory, solving a constrained problem is roughly
as expensive as solving

√
M unconstrained problems. In practice, it

is actually much cheaper – standard log barrier iterations take maybe
20–50 iterations to produce good results.

Primal dual interior point methods

These are closely related to log barrier algorithms, but they take a
more direct approach towards “solving” the KKT conditions. The
general idea is to treat the KKT conditions like a set of nonlinear
equations, and solve them using Newton’s method.

We start with the same set of relaxed KKT conditions3 we used with

3We are again only considering inequality constraints; it is straightforward
to modify everything we say here to include linear equality constraints.
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log barrier:

rτ(x,λ) =


∇f (x) +

∑
m λm∇gm(x)

−λ1g1(x)− 1/τ
...

−λmgm(x)− 1/τ


If we find x and λ such that the N + M -vector rτ(x,λ) = 0, then
we know we have found the same x?(τ ), λ?(τ ) that solve the log
barrier problem.

Primal-dual interior point methods take Newton steps to try to make
rτ = 0, but they adjust τ at every step. The Newton step is char-
acterized by

rτ(x + δx,λ + δλ) ≈ rτ(x,λ) + J rτ (x,λ)

[
δx
δλ

]
= 0,

where J rτ (x,λ) is the Jacobian matrix for the vector-valued func-
tion rτ given by the approximation
∇2f (x) +

∑
m λm∇2gm(x) ∇g1(x) ∇g2(x) · · · ∇gM(x)

−λ1∇g1(x)T − g1(x) 0 0
−λ2∇g2(x)T 0 −g2(x) 0

... . . . ...
−λM∇gM(x)T 0 0 · · · −gM(x)

 .
The update direction is[

δx
δλ

]
= −J−1rτ rτ(x,λ).

With this direction, we can perform a line search. The parameter τ
is updated at every step (getting larger) based on an estimate of the
duality gap.
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A key feature of this type of primal dual method is that the iterates
xk and λk do not have to be feasible (although they of course become
feasible in the limit).
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