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So far we have focused exclusively on unconstrained optimization
problems. In such a setting, our goal is typically clear: find a point
where the gradient (or subgradient) is equal to zero. All of the al-
gorithms we have explored so far were different strategies for finding
such a point. Once we add constraints, however, things get a bit
more complicated. In particular, there may no longer be any points
that satisfy the constraints we are imposing where the gradient van-
ishes. Showing that we have found an optimal point will now involve
a more complicated relationship between the gradient of the function
we are minimizing together with the constraints.

In these notes we will look at a specific class of constrained optimiza-
tion problems of the form

minimize
x∈RN

f (x) subject to gm(x) ≤ 0, m = 1, . . . ,M. (1)

Here, we represent the constraints as functions g1, . . . , gM , which by
convention we define so that we are always imposing gm(x) ≤ 0.
Note that if we had a constraint of the form h(x) = 0 we could write
this as h(x) ≤ 0 combined with −h(x) ≤ 0, so equality constraints
can also be handled, although we will encounter these less frequently
in this course.1

While some of what we will say actually applies to the case where
the gm are nonconvex, we will mostly only be interested in the case
where the gm are convex functions.

1In practice, you would want to handle equality constraints more explicitly,
but focusing only on inequality constraints will make the exposition quite
a bit cleaner without really sacrificing any intuition.
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An important consideration in constrained optimization problems is
the concept of feasibility. A vector x is feasible if it satisfies the
constraints of (1). Specifically, a feasible x must satisfy gm(x) ≤ 0
for m = 1, . . . ,M . It is not a given that any feasible x exists. For
instance, I might demand that

∑N
n=1 xn > 1 and also

∑N
n=1 xn < −1.

Clearly, no x that simultaneously satisfies both of these constraints
can exist. In our discussion below, we will assume that the feasible
set, i.e., the set

C = {x ∈ RN : gm(x) ≤ 0 m = 1, . . . ,M},

is non-empty.

The Lagrangian

The Lagrangian takes the constraints in the program above and
integrates them into the objective function. Specifically, the La-
grangian L : RN × RM → R associated with (1) is

L(x,λ) = f (x) +
M∑

m=1

λmgm(x).

For reasons that will become clearer below, the x above are referred
to as primal variables, and the λ as either dual variables or
Lagrange multipliers.

The Lagrangian allows us to transform the constrained optimization
problem in (1) into an unconstrained one. Specifically, consider the
problem given by

minimize
x∈RN

f (x) +
M∑

m=1

λmgm(x). (2)
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To get some intuition, suppose that the λ1, . . . , λM are very large
(positive) numbers. In this case, violating any constraint (allowing
gm(x) > 0) will result in a very large penalty being added to the
objective function. Thus, by setting the corresponding λm to be
sufficiently large we can force the constraints to be satisfied.

The problem here is that large values of λm not only avoid the setting
where gm(x) > 0, but actually encourages gm(x) � 0 (since we
can potentially benefit by not just satisfying the constraints but by
exceeding them by a large margin).

This raises a natural question: can we set λ so that the solution
to the unconstrained problem (2) is the same as the constrained
problem (1)? Here we will provide an answer in the case where the
objective function f and the constraints g1, . . . , gM are both convex
and differentiable.

Suppose that x? is a solution to the constrained problem (1). Then
x? will also be a solution to (2) if and only if

∇L(x?,λ) = ∇f (x?) +
M∑

m=1

λm∇gm(x?) = 0. (3)

If we knew x? already, finding a λ that would make the unconstrained
and constrained problems equivalent (meaning that they both have
the same solution x?) would just amount to finding a λ such that (3)
holds. Unfortunately, this might not seem to be particularly useful
since x? is what we are trying to find to begin with.

To see how we might compute a λ that makes the unconstrained
and constrained problems equivalent, we will need to begin our first
exploration of one of the deepest and most important ideas of opti-
mization: duality.
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The Lagrange dual function

We can think of the unconstrained optimization problem (2) as ac-
tually representing a family of different optimization problems (de-
pending on λ). For any fixed λ, imagine solving (2) and computing
the minimal value of the objective function – we can think of this as
actually defining a function that maps λ ∈ RM to R. We call this
the Lagrange dual function d(λ), which is defined as

d(λ) = min
x∈RN

(
f (x) +

M∑
m=1

λmgm(x)

)
.

Note that since the dual is the pointwise infimum of a family of affine
functions in λ, the Lagrange dual function is always concave,
regardless of whether or not f and the gm are convex. While we will
not stress this much here, this is a remarkable fact and can be very
useful when dealing with nonconvex problems.

A key fact about the dual function is that it can provide a lower
bound on the optimal value of the original program. In the discussion
below, we assume throughout that λ ≥ 0 is arbitrary. Our main
claim is that if p? = f (x?) is the optimal value for (1),2 then we have

d(λ) ≤ p?.

This is very easy to show. Specifically, for any feasible point x′, we
must have gm(x′) ≤ 0 for all m and hence

M∑
m=1

λmgm(x′) ≤ 0.

2We use p? instead of p? to indicate the optimal value of the primal problem,
which we will soon be opposing to the optimal value of the dual problem.
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From this we have that

L(x′,λ) ≤ f (x′),

meaning
d(λ) = min

x∈RN
L(x,λ) ≤ L(x′,λ) ≤ f (x′).

Since this holds for all feasible x′, including the minimizer of (1), we
have d(λ) ≤ p?.

The (Lagrange) dual problem

Given that d(λ) provides a lower bound on p?, if you wanted to get
an idea of what p? looks like (for example, to see if you are close to
convergence), it is natural to see how large you can make this lower
bound. This gives rise to what we call the dual problem of (1):

maximize
λ∈RM

d(λ) subject to λ ≥ 0. (4)

The dual optimal value d? is

d? = max
λ≥0

d(λ) = max
λ≥0

min
x∈RN
L(x,λ).

Since d(λ) ≤ p?, we know that

d? ≤ p?.

The quantity p?− d? is called the duality gap. If p? = d?, then we
say that (1) and (4) exhibit strong duality.

We will soon discuss when strong duality holds, but first, why is it
important? Suppose that x? is a solution to the original constrained

5

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 12:26, November 3, 2021



problem (1) – which we will call the primal problem to distinguish
it from the dual problem – and suppose that λ? is a solution to the
dual problem (4). It turns out that if we have strong duality, then λ?

is exactly what we need to make x? the solution to the unconstrained
problem (2).

To see why, note that if we have strong duality then

f (x?) = d(λ?)

= min
x∈RN

(
f (x) +

M∑
m=1

λ?
mgm(x)

)

≤ f (x?) +
M∑

m=1

λ?
mgm(x?)

≤ f (x?). (5)

where the last inequality follows from the fact that we must have
λ?
m ≥ 0 and gm(x?) ≤ 0. Looking at this entire chain of inequalities,

where the first and last term are both f (x?), means that

f (x?) = min
x∈RN
L(x,λ?) = L(x?,λ?).

In words, the solution to the primal problem x? is also a minimizer
of L(x,λ?).
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Strong duality and the duality gap

So when does strong duality hold? The answer can be pretty compli-
cated and depends on the structure of the constraints. There are a
variety of so-called “constraint qualifications” that serve as sufficient
conditions to guarantee strong duality.

Probably the simplest is known as Slater’s condition, which is
essentially that the gm are affine inequality constraints (i.e., they can
be expressed as Ax ≤ b), and that there is an x that is strictly
feasible for the remaining constraints (i.e., an x such that for all the
gm which are not affine we have gm(x) < 0). Actually proving that
this condition implies strong duality is somewhat involved. We will
not worry too much about this, in all of the problems that we will
encounter in this course, strong duality will hold.

One other useful fact regarding the duality gap is that it can serve
as a way of measuring how far away we are from finding an optimal
solution to our optimization problem. To see this recall that any
λ ≥ 0 gives us a lower bound on p?, since d(λ) ≤ p?. Thus, we
know that for any (feasible) x we have

f (x)− p? ≤ f (x)− d(λ).

This tells us that

p? ∈ [d(λ), f (x)], and likewise d? ∈ [d(λ), f (x)].

If we are ever able to reduce this gap to zero, then we know that x is
primal optimal, and λ is dual optimal, i.e., we have solved both the
primal and dual problems. There are certain kinds of “primal-dual”
algorithms that exploit this property that we will encounter later in
this course.
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Example

Consider the optimization problem

minimize
x∈RN

〈x, c〉 subject to Ax ≤ b.

This is called a linear program (since the objective function is
just a linear function of x). The Lagrangian is

L(x,λ) = 〈x, c〉 +
M∑

m=1

λm (〈x,am〉 − bm)

= cTx− λTb + λTAx.

This is a linear function of x. Note that it is unbounded below unless

c +ATλ = 0.

Thus

d(λ) = min
x

(
cTx− λTb + λTAx

)
=

{
−〈λ, b〉, c +ATλ = 0

−∞, otherwise.

So the Lagrange dual program is

maximize
λ∈RM

−〈λ, b〉 subject to ATλ = −c

λ ≥ 0.

Note that the dual is another linear program.
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