Proximal algorithms

The subgradient algorithm is one generalization of gradient descent.
It is simple, but the convergence is typically very slow (and it does
not even converge in general for a fixed step size).

One way to deal with this is to add a smooth reqularization term.
Specifically, it is easy to show that if &* is a minimizer of f(a), then
it is also the minimizer of
*||2

mmelﬂrgjlvlze flx) + 0|l — x5,
where 0 > 0. While the resulting optimization problem is still nons-
mooth, it is now strongly convex, and we know that strongly convex
functions are generally much easier to minimize. The “only” chal-
lenge is that it requires us to already know the solution a&*, which
would seem to limit the practical applicability of this idea.

We can turn this into an actual algorithm by adopting an iterative ap-
proach. The proximal algorithm or proximal point method
uses the following iteration:'

i = argnin (f(a) + 5o — @))
xeRN 200 Ql;

As noted above, when f is convex, f(x) + 0||lx — z||3 is strictly

convex for all § > 0 and z € RY, so the mapping from x;, to x;,; is

well-defined. We will sometimes use the “prox operator” to denote

this mapping:

, 1
pros,,(z) = argmin (f(a) + o [le — 2[2).
reRN 873

'The notation arg min, g~ f(2) denotes a function that returns the vector
x € RY that minimizes f(x). This is in contrast to mingeg~ (), which
refers to the minimum possible value for f(x).

30

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:28, November 3, 2021

At this point, you would be forgiven for having doubts about what
we are really doing here. We have taken an optimization problem and
turned it into... a sequence of many optimization problems. How-
ever, these problems can sometimes be far easier to solve that the
original problem. One way to think about the additional ﬁ | — ||
term is as a regularizer that makes each subproblem computation-
ally easier to solve, and whose influence naturally disappears as we
approach the solution, even for a fixed “step size” oy = «.

Implicit gradient descent (“backward Euler”)

The proximal point method can also be interpreted as a variation
on gradient descent. To see this, let us return for a moment to the
differential equations for the “gradient flow” of f:

o'(t) = =V f(x(t), x(0) =z (2)

The equilibrium points for this system are the & such that V f(x) =
0, which are precisely the minimizers for f(ax).

As we first discussed in the context of momentum-based methods,
we can interpret gradient descent as a first-order numerical method
for tracing the path from @, to a solution x*. This comes from dis-
cretizing the derivative on the right using a forward finite difference:
x(t+h)—x(t)

h Y

Thus the gradient descent iterations

Tpi1 = T — hV f(x)

—V f(x(t)) for small h.

approximate the solution at equispaced times spaced h seconds apart
— the step size in gradient descent can be interpreted as the time scale

31

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:28, November 3, 2021

to which we are approximating the derivative. This is known as the
forward Euler method for discretizing (2).

But now suppose we used a backward difference to approximate the
derivative:

x(t)—x(t —h)
h

Now the iterates must obey

~ —V f(x(t)) forsmall h.

Lpy1 = L — hvf(warl)-

This is an equally valid technique for discretizing (2) known as the
backward Fuler method. However, computing the iterates is not as
straightforward — we can’t just compute the gradient at the current
point, we have to find the next point by finding an @, that obeys
the equation above.

This is exactly what the proximal operator does. If f is differentiable,
then

_ 1
L1 = argmin (f(a:) + Q—Hw - wkH%)
873

xeRN
0
0=V f(@p1)+ Ozik(wkﬂ —). (3)

So the proximal point method can be interpreted as a backward Euler
discretization for gradient flow.

Note that we assumed the differentiability of f above purely for il-
lustration; we can compute the prox operator whether or not f has
a gradient.

32

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:28, November 3, 2021

Example: Least squares

Suppose we want to solve the standard least-squares problem

o])
minimize §Hy — Azx||;.

When A has full column rank, we know that the solution is given
by Z)y = (A" A)'A'y. However, we also know that when A" A is
not well-conditioned, this inverse can be unstable to compute, and
iterative descent methods (gradient descent and conjugate gradients)
can take many iterations to converge.

Consider the proximal point iteration (with fixed ay, = «) for solving
this problem:

(1 1
Tj.1 = arg min (§||y — Azx|; + %Hw — wng) :

RN

Here we have the closed form solution

1
x,1=(A"A+) (Aly + 6xy), i

0}

=z, + (ATA+ 1) A (y — Axy).

Now each step is equivalent to solving a least-squares problem, but
this problem can be made well-conditioned by choosing ¢ (i.e., a)
appropriately. The iterations above will converge to &, for any value
of a; as we decrease « (increase ¢), the number of iterations to
get within a certain accuracy of &y increases, but the least-squares
problems involved are all very well conditioned. For « very small,
we are back at gradient descent (with step size «).

This is actually a well-known technique in numerical linear algebra
called iterative refinement.

33

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:28, November 3, 2021

Proximal gradient algorithms

Recall the core update equation for the proximal point method:

T} = Prox,, ((x;) = arg min (f(a:) - QLH:B - wkﬂg) :
zeRN ay;
Suppose that we did not wish to fully solve this problem at each iter-
ation. If f is differentiable, we could approximate this update by re-
placing f(ax) with its linear approximation f(x)+(x—ax;, V f(x;)).
This would yield the update

, 1
v1 = arg min flay) + (@ — @, V(o) + 5w — o)
k

reRN

e 1
— arg win (PV @0 + (@~ @i, VS (@e) + 5l - @il)

xRN
, 1
= arg min Q—HZL’—ZUk;JrOéka(mk)Hg)
xeRN Qp,

Thus, taking a linear approximation of f, the proximal method sim-
ply reduces to standard gradient descent.

Where this starts getting interesting is when we encounter optimiza-
tion problems where the objective function can be broken into the
sum two parts, 1.e.,

f(x) = g(x) + h(z),

where both g and h are convex, but ¢ is smooth (differentiable) and h
is a non-smooth function for which there is a fast proximal operator.
Such optimization problems quite a bit more often than you might
expect.

84

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:28, November 3, 2021

The proximal gradient algorithm is the result of applying the
proximal point method to minimize the approximation of f where
we take a linear approximation to the smooth component g. Using
the same argument as above, this results in the update rule

: 1
v1 = arg min (gla) + (@ — o, V(o)) + hiw) + 5@ -)
k

reRN

, 1
= arg min (h()+ oo — || — =z + Oékvg(fbk)Hz)
Q,

reRN
= prox,,, (z¢r — axVg(xy)) .

This is also called forward-backward splitting, with the “forward”
referring to the gradient step, and the “backward” to the proximal
step. (The prox step is still making progress, just like the gradient
step; the forward and backward refer to the interpretations of gra-
dient descent and the proximal algorithm as forward and backward
Euler discretizations, respectively.)

Example: The LASSO

Recall our friend the LASSO:

1

— A
minimize 5|y — Awl; + 7|

We take
1
o(@) = Sy — Azl s Volw)= A"(Az —y).

and

h(x) = 7|z|);.

89

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:28, November 3, 2021

The prox operator for the £; norm is:

. 1 2
prox,,(z) = arg min (7||z[|; + [z — 2||;
rcRN 20

— TTOé(z)7
where 17, is the soft-thresholding operator
Zn — TQ, Z, 2 TQ,
[Tm(z)]n =40, ‘Zn‘ < Ta,
z, F T, oz, < —Ta.

Hence, the gradient step requires an application of A and A", and
the proximal step simply requires a soft-thresholding operation. The
iteration looks like

i1 =Tro, (a:k + oAl (y — Awk)) .
This is also called the iterative soft thresholding algorithm, or ISTA.

Here is a comparison” of a typical run for ISTA versus the subgradient
method. ISTA absolutely crushes the subgradient method.

0.50
|

0.10 0.20
| |

0.05
|

—— Subgradient method
—— Generalized gradient

0.02
|

T T T T T T
0 200 400 600 800 1000

iterations

>This is taken from the lecture notes of Geoff Gordon and Ryan Tibshirani;
“generalized gradient” in the legend means ISTA.

36

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:28, November 3, 2021

Accelerated proximal gradient

We can accelerate the proximal gradient method in exactly the same
way we accelerated gradient descent — in fact, the Nesterov’s method
for gradient descent is simply a special case as that for the proximal
gradient algorithm. The accelerated iteration is

B k—1
Py =
L1 = Prox,, (x + P, — axVg(Ti +py)) -

(wk - «’13/<:—1)

Again, the computations here are in general no more involved than
for the non-accelerated version, but the number of iterations can be
significantly lower. We will not prove it here (the proof is straight-
forward, but long), but adding in the momentum term results in
convergence rate of O(1/k?) using a similar argument as before.

The numerical performance can also be dramatically better. Here are
typical runs® for the LASSO, which compares the standard proximal
gradient method (ISTA) to its accelerated version (FISTA):

0.200 0.500

0.020 0.050

=
8
NI
|
~
%

—— Subgradient method
—— Generalized gradient
- —— Nesterov acceleration

0.002 0.005

T T T T T T
0 200 400 600 800 1000

iterations

3Again, this example comes from Gordon and Tibshirani; as before “gener-
alized gradient” means ISTA, and “Nesterov acceleration” means FISTA.

87

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:28, November 3, 2021

Convergence of the proximal gradient method

The convergence analysis of the proximal gradient method is ex-
tremely similar to what we did for gradient descent. In fact, gradi-
ent descent is a special case of the proximal gradient method (when
h(x) = 0), and our analysis will recover the same result. We will
assume that g is M-smooth, but we will make no assumptions on
h aside from convexity. As before, we will use a fixed “step size”,
ap = 1/M for all k. We will * denote any minimizer of f.

The general structure of the argument is as follows:

1. Using the M-smoothness of g as well as the first-order charac-
terization of convexity, we can establish that

f(@rn) < f(2) + (@ — 2,dy) — —||dng (4)

for all z € RY where d, := M(x; — j11).

2. From (4) we can conclude, by setting z = @, that

fl@en) < flan) = 5ol < fla)

and thus f(x;) is non-increasing at every step.

3. From (4) we can also conclude, by setting z = a*, that

f(@®r1) < flx") + (2 — 2", dy) — —HdkHQ

By exactly the same argument as we have seen in the analysis
of both gradient descent and Nesterov’s method, we can show
that this bound is equivalent to

F (@) — flar) < 2 :

([Jly — 2] "5

> = [k — 27)3)

38

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:28, November 3, 2021

4. This yields a telescopic sum, and hence by an identical argu-

ment to that used in analyzing gradient descent, we arrive at
the bound

o —)5

flxr) — f(x") <

==

Thus, the proximal gradient algorithm exhibits the same convergence
rate as gradient descent: O(1/k). This is remarkable when consid-
ering that it holds for any h. This result is in fact a kind of “master
result” for the convergence rate of many different algorithms:

e gradient descent (take h(x) = 0),
e the proximal point method (take g(x) = 0),
e the proximal gradient method.

The work above gives a unified analysis for all three of these, showing
that they all exhibit O(1/k) convergence.

Note that the only novelty in the analysis above compared to that of
gradient descent is the derivation of (4). To establish this inequality,
we first note that

f(@ri1) (@r11) + h(@pi1)

1

=9
< glas) — e, Vglan)) + srolduli + blaea), 6)

where the inequality follows directly from the definition of M-smoothness.
We now use two facts to get an upper bound on this expression. First,
note that from the first-order characterization of convexity,

9(2) 2 gl@r) + (2 — @, Vg(zh)). (6)

39

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:28, November 3, 2021

Second, since

1
L1 = PrOXy (wk - Mvg(wk))

€Tr

. M 1
= arg min (h(:c) +5 Ha: — Ty + MVg(wk)

2
)
2

0e 8h(azk+1) — dk + Vg(a:k) = dk — Vg(:lzk) € 8h(wk+1)

we know

Thus
h(z) > h(®ps1) + (2 — Tpy1, dp — V(). (7)

We combine (6) and (7) back into (5) to obtain

1 1
f(@ia) < g(2) + (@ — 2, Vg(@n)) — - {di, V(@) + deng
1
1 /M
— () + (@ =z + 57 (537~ 1) Il
1
< f(z) + {@p — 2. dy) — m“dkH%a
which establishes (4).
90

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:28, November 3, 2021

