
Proximal algorithms

The subgradient algorithm is one generalization of gradient descent.
It is simple, but the convergence is typically very slow (and it does
not even converge in general for a fixed step size).

One way to deal with this is to add a smooth regularization term.
Specifically, it is easy to show that if x? is a minimizer of f (x), then
it is also the minimizer of

minimize
x∈RN

f (x) + δ‖x− x?‖22,
where δ > 0. While the resulting optimization problem is still nons-
mooth, it is now strongly convex, and we know that strongly convex
functions are generally much easier to minimize. The “only” chal-
lenge is that it requires us to already know the solution x?, which
would seem to limit the practical applicability of this idea.

We can turn this into an actual algorithm by adopting an iterative ap-
proach. The proximal algorithm or proximal point method
uses the following iteration:1

xk+1 = arg min
x∈RN

(
f (x) +

1

2αk
‖x− xk‖22

)
. (1)

As noted above, when f is convex, f (x) + δ‖x − z‖22 is strictly
convex for all δ > 0 and z ∈ RN , so the mapping from xk to xk+1 is
well-defined. We will sometimes use the “prox operator” to denote
this mapping:

proxαkf
(z) = arg min

x∈RN

(
f (x) +

1

2αk
‖x− z‖22

)
.

1The notation arg minx∈RN f(x) denotes a function that returns the vector
x ∈ RN that minimizes f(x). This is in contrast to minx∈RN f(x), which
refers to the minimum possible value for f(x).
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At this point, you would be forgiven for having doubts about what
we are really doing here. We have taken an optimization problem and
turned it into... a sequence of many optimization problems. How-
ever, these problems can sometimes be far easier to solve that the
original problem. One way to think about the additional 1

2αk
‖x−xk‖

term is as a regularizer that makes each subproblem computation-
ally easier to solve, and whose influence naturally disappears as we
approach the solution, even for a fixed “step size” αk = α.

Implicit gradient descent (“backward Euler”)

The proximal point method can also be interpreted as a variation
on gradient descent. To see this, let us return for a moment to the
differential equations for the “gradient flow” of f :

x′(t) = −∇f (x(t)), x(0) = x0. (2)

The equilibrium points for this system are the x such that ∇f (x) =
0, which are precisely the minimizers for f (x).

As we first discussed in the context of momentum-based methods,
we can interpret gradient descent as a first-order numerical method
for tracing the path from x0 to a solution x?. This comes from dis-
cretizing the derivative on the right using a forward finite difference:

x(t + h)− x(t)

h
≈ −∇f (x(t)) for small h.

Thus the gradient descent iterations

xk+1 = xk − h∇f (xk)

approximate the solution at equispaced times spaced h seconds apart
– the step size in gradient descent can be interpreted as the time scale
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to which we are approximating the derivative. This is known as the
forward Euler method for discretizing (2).

But now suppose we used a backward difference to approximate the
derivative:

x(t)− x(t− h)

h
≈ −∇f (x(t)) for small h.

Now the iterates must obey

xk+1 = xk − h∇f (xk+1).

This is an equally valid technique for discretizing (2) known as the
backward Euler method. However, computing the iterates is not as
straightforward – we can’t just compute the gradient at the current
point, we have to find the next point by finding an xk+1 that obeys
the equation above.

This is exactly what the proximal operator does. If f is differentiable,
then

xk+1 = arg min
x∈RN

(
f (x) +

1

2αk
‖x− xk‖22

)
m

0 = ∇f (xk+1) +
1

αk
(xk+1 − xk). (3)

So the proximal point method can be interpreted as a backward Euler
discretization for gradient flow.

Note that we assumed the differentiability of f above purely for il-
lustration; we can compute the prox operator whether or not f has
a gradient.
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Example: Least squares

Suppose we want to solve the standard least-squares problem

minimize
x∈RN

1

2
‖y −Ax‖22.

When A has full column rank, we know that the solution is given
by x̂ls = (ATA)−1ATy. However, we also know that when ATA is
not well-conditioned, this inverse can be unstable to compute, and
iterative descent methods (gradient descent and conjugate gradients)
can take many iterations to converge.

Consider the proximal point iteration (with fixed αk = α) for solving
this problem:

xk+1 = arg min
x∈RN

(
1

2
‖y −Ax‖22 +

1

2α
‖x− xk‖22

)
.

Here we have the closed form solution

xk+1 = (ATA + δI)−1(ATy + δxk), δ =
1

α
= xk + (ATA + δI)−1AT(y −Axk).

Now each step is equivalent to solving a least-squares problem, but
this problem can be made well-conditioned by choosing δ (i.e., α)
appropriately. The iterations above will converge to x̂ls for any value
of α; as we decrease α (increase δ), the number of iterations to
get within a certain accuracy of x̂ls increases, but the least-squares
problems involved are all very well conditioned. For α very small,
we are back at gradient descent (with step size α).

This is actually a well-known technique in numerical linear algebra
called iterative refinement.
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Proximal gradient algorithms

Recall the core update equation for the proximal point method:

xk+1 = proxαkf
(xk) = arg min

x∈RN

(
f (x) +

1

2αk
‖x− xk‖22

)
.

Suppose that we did not wish to fully solve this problem at each iter-
ation. If f is differentiable, we could approximate this update by re-
placing f (x) with its linear approximation f (xk)+〈x−xk,∇f (xk)〉.
This would yield the update

xk+1 = arg min
x∈RN

(
f (xk) + 〈x− xk,∇f (xk)〉 +

1

2αk
‖x− xk‖22

)
= arg min

x∈RN

(
αk
2
‖∇f (xk)‖22 + 〈x− xk,∇f (xk)〉 +

1

2αk
‖x− xk‖22

)
= arg min

x∈RN

(
1

2αk
‖x− xk + αk∇f (xk)‖22

)
= xk − αk∇f (xk).

Thus, taking a linear approximation of f , the proximal method sim-
ply reduces to standard gradient descent.

Where this starts getting interesting is when we encounter optimiza-
tion problems where the objective function can be broken into the
sum two parts, i.e.,

f (x) = g(x) + h(x),

where both g and h are convex, but g is smooth (differentiable) and h
is a non-smooth function for which there is a fast proximal operator.
Such optimization problems quite a bit more often than you might
expect.
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The proximal gradient algorithm is the result of applying the
proximal point method to minimize the approximation of f where
we take a linear approximation to the smooth component g. Using
the same argument as above, this results in the update rule

xk+1 = arg min
x∈RN

(
g(xk) + 〈x− xk,∇g(xk)〉 + h(x) +

1

2αk
‖x− xk‖22

)
= arg min

x∈RN

(
h(x) +

1

2αk
‖x− xk + αk∇g(xk)‖22

)
= proxαkh

(xk − αk∇g(xk)) .

This is also called forward-backward splitting, with the “forward”
referring to the gradient step, and the “backward” to the proximal
step. (The prox step is still making progress, just like the gradient
step; the forward and backward refer to the interpretations of gra-
dient descent and the proximal algorithm as forward and backward
Euler discretizations, respectively.)

Example: The LASSO

Recall our friend the LASSO:

minimize
x∈RN

1

2
‖y −Ax‖22 + τ‖x‖1.

We take

g(x) =
1

2
‖y −Ax‖22, so ∇g(x) = AT(Ax− y),

and
h(x) = τ‖x‖1.
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The prox operator for the `1 norm is:

proxαh(z) = arg min
x∈RN

(
τ‖x‖1 +

1

2α
‖x− z‖22

)
= Tτα(z),

where Tτα is the soft-thresholding operator

[Tτα(z)]n =


zn − τα, zn ≥ τα,

0, |zn| ≤ τα,

zn + τα, zn ≤ −τα.
Hence, the gradient step requires an application of A and AT, and
the proximal step simply requires a soft-thresholding operation. The
iteration looks like

xk+1 = Tταk

(
xk + αkA

T(y −Axk)
)
.

This is also called the iterative soft thresholding algorithm, or ISTA.

Here is a comparison2 of a typical run for ISTA versus the subgradient
method. ISTA absolutely crushes the subgradient method.

f (xk)− f ?

Recall rg(x) = �AT (y � Ax). Hence generalized gradient update
step is:

x+ = S�t(x + tAT (y � Ax))

Resulting algorithm called ISTA (Iterative Soft-Thresholding
Algorithm). Very simple algorithm to compute a lasso solution

Generalized gradient
(ISTA) vs subgradient

descent:
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2This is taken from the lecture notes of Geoff Gordon and Ryan Tibshirani;
“generalized gradient” in the legend means ISTA.
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Accelerated proximal gradient

We can accelerate the proximal gradient method in exactly the same
way we accelerated gradient descent – in fact, the Nesterov’s method
for gradient descent is simply a special case as that for the proximal
gradient algorithm. The accelerated iteration is

pk =
k − 1

k + 2
(xk − xk−1)

xk+1 = proxαkh
(xk + pk − αk∇g(xk + pk)) .

Again, the computations here are in general no more involved than
for the non-accelerated version, but the number of iterations can be
significantly lower. We will not prove it here (the proof is straight-
forward, but long), but adding in the momentum term results in
convergence rate of O(1/k2) using a similar argument as before.

The numerical performance can also be dramatically better. Here are
typical runs3 for the LASSO, which compares the standard proximal
gradient method (ISTA) to its accelerated version (FISTA):

f (xk)− f ?
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3Again, this example comes from Gordon and Tibshirani; as before “gener-
alized gradient” means ISTA, and “Nesterov acceleration” means FISTA.
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Convergence of the proximal gradient method

The convergence analysis of the proximal gradient method is ex-
tremely similar to what we did for gradient descent. In fact, gradi-
ent descent is a special case of the proximal gradient method (when
h(x) = 0), and our analysis will recover the same result. We will
assume that g is M -smooth, but we will make no assumptions on
h aside from convexity. As before, we will use a fixed “step size”,
αk = 1/M for all k. We will x? denote any minimizer of f .

The general structure of the argument is as follows:

1. Using the M -smoothness of g as well as the first-order charac-
terization of convexity, we can establish that

f (xk+1) ≤ f (z) + 〈xk − z,dk〉 −
1

2M
‖dk‖22 (4)

for all z ∈ RN where dk := M(xk − xk+1).

2. From (4) we can conclude, by setting z = xk, that

f (xk+1) ≤ f (xk)−
1

2M
‖dk‖22 ≤ f (xk),

and thus f (xk) is non-increasing at every step.

3. From (4) we can also conclude, by setting z = x?, that

f (xk+1) ≤ f (x?) + 〈xk − x?,dk〉 −
1

2M
‖dk‖22.

By exactly the same argument as we have seen in the analysis
of both gradient descent and Nesterov’s method, we can show
that this bound is equivalent to

f (xk+1)− f (x?) ≤ M

2

(‖xk − x?‖22 − ‖xk+1 − x?‖22
)
.
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4. This yields a telescopic sum, and hence by an identical argu-
ment to that used in analyzing gradient descent, we arrive at
the bound

f (xk)− f (x?) ≤ M

2k
‖x0 − x?‖22.

Thus, the proximal gradient algorithm exhibits the same convergence
rate as gradient descent: O(1/k). This is remarkable when consid-
ering that it holds for any h. This result is in fact a kind of “master
result” for the convergence rate of many different algorithms:

• gradient descent (take h(x) = 0),

• the proximal point method (take g(x) = 0),

• the proximal gradient method.

The work above gives a unified analysis for all three of these, showing
that they all exhibit O(1/k) convergence.

Note that the only novelty in the analysis above compared to that of
gradient descent is the derivation of (4). To establish this inequality,
we first note that

f (xk+1) = g(xk+1) + h(xk+1)

≤ g(xk)−
1

M
〈dk,∇g(xk)〉 +

1

2M
‖dk‖22 + h(xk+1), (5)

where the inequality follows directly from the definition ofM -smoothness.
We now use two facts to get an upper bound on this expression. First,
note that from the first-order characterization of convexity,

g(z) ≥ g(xk) + 〈z − xk,∇g(xk)〉. (6)
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Second, since

xk+1 = proxh/M

(
xk −

1

M
∇g(xk)

)
= arg min

x

(
h(x) +

M

2

∥∥∥∥x− xk +
1

M
∇g(xk)

∥∥∥∥2
2

)
,

we know

0 ∈ ∂h(xk+1)− dk +∇g(xk) ⇒ dk −∇g(xk) ∈ ∂h(xk+1).

Thus
h(z) ≥ h(xk+1) + 〈z − xk+1,dk −∇g(xk)〉. (7)

We combine (6) and (7) back into (5) to obtain

f (xk+1) ≤ g(z) + 〈xk − z,∇g(xk)〉 −
1

M
〈dk,∇g(xk)〉 +

1

2M
‖dk‖22

+ h(z)−
〈
z − xk +

1

M
dk,dk −∇g(xk)

〉
= f (z) + 〈xk − z,dk〉 +

1

M

(
M

2M
− 1

)
‖dk‖22

≤ f (z) + 〈xk − z,dk〉 −
1

2M
‖dk‖22,

which establishes (4).
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