
Nonsmooth optimization

Most of the theory and algorithms that we have explored for convex
optimization have assumed that the functions involved are differen-
tiable – that is, smooth.

This is not always the case in interesting applications. In fact, non-
smooth functions can arise quite naturally in applications. We have
already convex functions that are not differentiable, including the
hinge loss max(aTx + b, 0), the `1 norm, the `∞ norm. As another
example, suppose f1, . . . , fQ are all perfectly smooth convex func-
tions. Then the pointwise maximum

f (x) = max
1≤q≤Q

fq(x)

is in general not smooth.

Fortunately, the theory for nonsmooth optimization is not too dif-
ferent than for smooth optimization. We really just need one new
concept: that of a subgradient.
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Subgradients

If you look back through the notes so far, you will see that the vast
majority of the time we use the gradient of a convex function, it is
in the context of the inequality

f (y) ≥ f (x) + 〈y − x,∇f (x)〉, for all x,y ∈ RN .

This is a very special property of convex functions, and it led to all
kinds of beautiful results.

When a convex f is not differentiable at a point x, we can more or
less reproduce the entire theory using subgradients. A subgradient
of f at x is a vector g such that

f (y) ≥ f (x) + 〈y − x, g〉, for all y ∈ RN .

Unlike gradients for smooth functions, there can be more than one
subgradient of a nonsmooth function at a point. We call the collection
of subgradients the subdifferential at x:

∂f (x) = {g : f (y) ≥ f (x) + 〈y − x, g〉, for all y ∈ RN}.
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Note that If f is convex and differentiable at x, then the subdiffer-
ential contains exactly one vector: the gradient, i.e.,

∂f (x) = {∇f (x)}.

For non-convex f , this is not true in general. The gradient at a point
is not necessarily a subgradient:

Moreover, if f is convex, a subgradient will exist (i.e., ∂f (x) is non-
empty) for any x ∈ RN . If f is not convex, there can be points
where no subgradient exists, e.g., f (x) = −

√
|x| for x ∈ R:
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Example: The `1 norm

Consider the function
f (x) = ‖x‖1.

The `1 norm is not differentiable at any x that has at least one coordi-
nate equal to zero. We will see that optimization problems involving
the `1 norm very often have solutions that are sparse, meaning that
they have many zeros. This is a big problem – the nonsmoothness is
kicking in at exactly the points we are interested in.

What does the subdifferential ∂‖x‖1 look like in such a case? To
see, recall that by definition, if a vector u ∈ ∂‖x‖1, at the point x,
then we must have

‖y‖1 ≥ ‖x‖1 + 〈y − x,u〉 (1)

for all y ∈ RN . To understand what this means in terms of x, it
is useful to introduce the notation Γ(x) to denote the set of indexes
where x is non-zero:

Γ(x) = {n : xn 6= 0}.

Using this, we can re-write the right-hand side of (1) as

‖x‖1 + 〈y − x,u〉 =
N∑
n=1

|xn| +
N∑
n=1

un(yn − xn)

=
∑
n∈Γ

|xn| − unxn +
N∑
n=1

unyn.

Note that if

un = sign(xn) =

{
1 if xn ≥ 0,

−1 if xn < 0,
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then unxn = |xn|. Thus, if un = sign(xn) for all n ∈ Γ, we have∑
n∈Γ

|xn| − unxn =
∑
n∈Γ

|xn| − |xn| = 0.

Thus, if we set un = sign(xn) for all n ∈ Γ, then (1) reduces to

‖y‖1 ≥ 〈y,u〉.

As long as |un| ≤ 1 for all n, then this will hold. Hence, if a vector
u satisfies

un = sign(xn) if n ∈ Γ,

|un| ≤ 1 if n /∈ Γ,

then u ∈ ∂‖x‖1. It is not hard to show that for any u that violates
these conditions, we can construct a y such that (1) is violated, and
thus this is a complete description of all vectors in u ∈ ∂‖x‖1.
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Optimality conditions for unconstrained optimization

(New and Improved!!)

With the right definition in place, it is very easy to re-derive the cen-
tral mathematical results in this course for general1 convex functions.

Let f (x) be a general convex function. Then x? is a solution to
the unconstrained problem

minimize
x∈RN

f (x)

if and only if
0 ∈ ∂f (x?).

The proof of this statement is so easy you could do it in your sleep.
Suppose 0 ∈ ∂f (x?). Then

f (y) ≥ f (x?) + 〈y − x?,0〉
= f (x?)

for all y ∈ RN . Thus x? is optimal. Likewise, if f (y) ≥ f (x?)
for all y ∈ RN , then of course it must also be true that f (y) ≥
f (x?) + 〈y − x,0〉 for all y, and so 0 ∈ ∂f (x?).

1Meaning not necessarily differentiable.
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Example: The LASSO

Consider the `1 regularized least-squares problem

minimize
x∈RN

1

2
‖y −Ax‖2

2 + τ‖x‖1.

We can quickly translate the general result 0 ∈ ∂f (x?) into a useful
set of optimality conditions. We need to compute the subdifferential
of f (x) = 1

2
‖y −Ax‖2

2 + τ‖x‖1. The first term is smooth, so the
subdifferential just contains the gradient:

∂f (x) = AT(Ax− y) + τ∂‖x‖1.

As shown above ∂‖x‖1 is the set of all vectors u such that

un = sign(xn) if xn 6= 0,

|un| ≤ 1 if xn = 0.

Thus the optimality condition

0 ∈ AT(Ax? − y) + τ∂‖x?‖1,

means that x? is optimal if and only if

aT
n (y −Ax?) = τ signx?

n if x?
n 6= 0,

|aT
n (y −Ax?)| ≤ τ if x?

n = 0.

where here an is the nth column of A.

Note that this doesn’t quite give us a closed form expression for x?

(except when A is an orthonormal matrix), but it is useful both algo-
rithmically (for checking if a candidate x is a solution) and theoreti-
cally (for understanding and analyzing the properties of the solution
to this optimization problem.)
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Subgradient descent

Subgradient descent is the non-smooth version of gradient descent.
The basic algorithm is straightforward, consisting of the iteration

xk+1 = xk − αkdk, (2)

where dk is any subgradient at xk, i.e., dk ∈ ∂f (xk). Of course, there
could be many choices for dk at every step, and the progress you make
at that iteration could very dramatically with this choice. Making
this determination, though, is often very difficult, and whether or not
it can even be done it very problem dependent. Thus the analytical
results for subgradient descent just assume we have any subgradient
at a particular step.

With the right choice of step sizes {αk}, some simple analysis (which
we will get to in a minute) shows that subgradient descent converges.
The convergence rate, though, is very slow. This is also evidenced in
most practical applications of this method: it can take many itera-
tions on even a medium-sized problem to arrive at a solution that is
even close to optimal.

Here is what we know about this algorithm for solving the general
unconstrained program

minimize
x∈RN

f (x). (3)

We will just state the results here. Along with f being convex, we will
assume that it has at least one minimizer. The results also assume
that f is Lipschitz:

|f (x)− f (y)| ≤ L‖x− y‖2.
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Note that here we are assuming that f is Lipschitz, not that f has
Lipschitz gradients (since the gradient does not even necessarily ex-
ist). This is a much weaker assumption than the smoothness/strong
convexity assumptions we considered before.

The main convergence result below uses pre-determined step sizes.
Thus the iteration (2) does not necessarily decrease the functional
f (x) at every step. We will keep track of the best value we have up
to the current iteration with

f best
k = min {f (xi), 0 ≤ i < k} .

We will let x? be any solution to (3) and set f ? = f (x?). In the
technical details at the end of these notes we show that

f best
k − f ? ≤ ‖x0 − x?‖2

2 + L2
∑k−1

i=0 α
2
i

2
∑k−1

i=0 αi

. (4)

We can now specialize this result to general step-size strategies.

Fixed step size. Suppose that αk = α > 0 for all k. Then (4)
becomes

f best
k − f ? ≤ ‖x0 − x?‖2

2

2kα
+
L2α

2
.

Note that in this case, no matter how small we choose t, the sub-
gradient algorithm is not guaranteed to converge. This
is, in fact, standard in practice as well. The problem is that, unlike
gradients for smooth functions, the subgradients do not have to van-
ish as we approach the solution. Even at the solution, there can be
subgradients that are large.
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Decreasing step size. The results above suggest that we might
want to decrease the step size as k increases, so we can get rid of
this constant offset term. To make the terms in (4) work out, we let
αk → 0, but not too fast. Specifically, we choose a sequence {αk}
such that

αk → 0 as k →∞, and
∞∑
k=1

αk =∞. (5)

It is an exercise (but a nontrivial one) to show that under these
conditions ∑k−1

i=0 α
2
i∑k−1

i=0 αi

→ 0 as k →∞.

Thus we do get guaranteed convergence of subgradient descent when
the stepsizes obey (5).

To get an idea of the tradeoffs involved here, suppose that αk =
α/(k + 1). Then for large k, we have the approximations

k−1∑
i=0

αi ∼ α log k, and
k−1∑
i=0

α2
i ∼ Const = α2π2/6

that are good as upper and lower bounds to within constants. In this
case, the convergence result (4) becomes

f best
k − f ? .

‖x0 − x?‖2
2

α log k
+
αL2

log k
.

So the convergence is extraordinarily slow – logarithmic in k.

You can get much better rates than this (but still not great) by
decreasing the stepsize more slowly. Consider now αk = α/

√
k + 1.
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Then for large k

k−1∑
i=0

αi ∼ (α + 1)
√
k, and

k−1∑
i=0

α2
i ∼ α2 log k,

and so

f best
k − f ? .

‖x0 − x?‖2
2

(α + 1)
√
k

+
αL2 log k√

k
.

This is something like O(1/
√
k) convergence. This means that if we

want to guarantee f best
k − f ? ≤ ε, we need k = O(1/ε2) iterations.

One can show that this is essentially the best we can do – there
are optimization problems where you cannot converge faster than
O(1/

√
k).

Example. Consider the “`1 approximation problem”

minimize
x∈RN

‖Ax− b‖1.

We have already looked at the subdifferential of ‖x‖1. Specifically,
we showed that u is a subgradient of ‖x‖1 at x if it satisfies

un = sign(xn) if xn 6= 0,

|un| ≤ 1 if xn = 0.

Using what is essentially the same argument we can derive the sub-
differential form f (x) = ‖Ax− b‖1. First consider a vector z that
satisfies

zm = sign(aT
mx− bm) if aT

mx− bm 6= 0,

|zm| ≤ 1 if aT
mx− bm = 0.
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Now consider the vector u = ATz. Note that

uT(y − x) = zTA(y − x)

= zT(Ay − b + b−Ax)

= zT(Ay − b)− zT(Ax− b)

= zT(Ay − b)− ‖Ax− b‖1

≤ ‖Ay − b‖1 − ‖Ax− b‖1.

Rearranging this shows that u is a subgradient of ‖Ax−b‖1. Using
this we can construct a subgradient at each step xk.

Below we illustrate the performance of this approach for a randomly
generated example with A ∈ R500×100 and b ∈ R1000. For three
different sizes of fixed step length, s = 0.1, 0.01, 0.001, we make
quick progress at the beginning, but then saturate, just as the theory
predicts:

(f(xk)− f ?)/f ? (fbest
k − f ?)/f ?

Example: 1-norm minimization

minimize kAx � bk1

• subgradient is given by AT sign(Ax � b)

• example with A 2 R500⇥100, b 2 R500

Fixed steplength tk = s/kg(k�1)k2 for s = 0.1, 0.01, 0.001
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Subgradient method 5-8

Example: 1-norm minimization

minimize kAx � bk1

• subgradient is given by AT sign(Ax � b)
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Subgradient method 5-8

Here is a run using two different decreasing step size strategies: αk =
.01/
√
k and αk = .01/k.
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(fbest
k − f ?)/f ?

Diminishing step size: tk = 0.01/
p

k and tk = 0.01/k
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Subgradient method 5-9

As you can see, even though the theoretical worst case bound makes
a stepsize of ∼ 1/

√
k look better, in this particular case, a stepsize

∼ 1/k actually performs better.

Qualitatively, the takeaways for subgradient descent are:

1. It is a natural extension of the gradient descent formulation

2. In general, it does not converge for fixed stepsizes.

3. If the stepsizes decrease, you can guarantee convergence.

4. Theoretical convergence rates are slow.

5. Convergence rates in practice are also very slow, but depend a
lot on the particular example.
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Technical Details: Convergence of subgradient descent

Our analytical results for subgradient descent stem from a careful
look at what happens during a single iteration. Note that

‖xi+1 − x?‖2
2 = ‖xi − αidi − x?‖2

2

= ‖xi − x?‖2
2 − 2αi〈xi − x?,di〉 + α2

i‖di‖2
2

≤ ‖xi − x?‖2
2 − 2αi(f (xi)− f ?) + α2

i‖di‖2
2,

where the inequality follows from the definition of a subgradient:

f ? ≥ f (xi) + 〈x? − xi,di〉.

Rearranging the bound above we have

2αi (f (xi)− f ?) ≤ ‖xi − x?‖2
2 − ‖xi+1 − x?‖2

2 + α2
i‖di‖2

2,

and so of course

2αi

(
f

(i)
best − f ?

)
≤ ‖xi − x?‖2

2 − ‖xi − x?‖2
2 + α2

i‖di‖2
2.

Since f best
i is monotonically decreasing, at iteration k we have

2αi

(
f best
k − f ?

) ≤ ‖xi − x?‖2
2 − ‖xi+1 − x?‖2

2 + α2
i‖di‖2

2,

for all i ≤ k. To understand what has happened after k iterations,
we sum both sides of the expression above from i = 0 to i = k − 1.
Notice that the two error terms on the right hand side give us the
telescoping sum:

k−1∑
i=0

(‖xi − x?‖2
2 − ‖xi+1 − x?‖2

2

)
= ‖x0 − x?‖2

2 − ‖xk − x?‖2
2

≤ ‖x0 − x?‖2
2
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and so

f best
k − f ? ≤ ‖x0 − x?‖2

2 +
∑k−1

i=0 α
2
i‖di‖2

2

2
∑k−1

i=0 αi

.

A direct consequence of f being Lipschitz is that the norms of the
subgradients are bounded:

‖d‖2 ≤ L, for all d ∈ ∂f (x), for all x ∈ RN .

Using this we can obtain the simpler bound in (4).
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