
Newton’s Method

Newton’s method is a classical technique for finding the root of a
general differentiable function f (x) : R → R. That is, we want to
find an x ∈ R such that

f (x) = 0.

As you probably learned in high school, one technique for doing this
is to start at some guess x0, and then follow the iteration

xk+1 = xk −
f (xk)

f ′(xk)
.

This update results from taking a simple linear approximation at
each step:

xk+1

f (xk) f ′(xk)

f (x)

x
xk

Of course, there can be many roots, and which one we converge to
will depend on what we choose for x0. It is also very much possible
that the iterations do not converge for certain (or even almost all)
initial values x0.

46

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:06, November 3, 2021

However there is a classical convergence theory that says that once
we are close enough to a particular root x0, we will have

|x0 − xk+1|︸ ︷︷ ︸
εk+1

≤ C · (x0 − xk)2︸ ︷︷ ︸
ε2k

,

where the constant C depends on the ratio between the first and
second derivatives in an interval1 around the root x0. The take-
away here is that close to the solution, Newton’s methods exhibits
quadratic convergence: the error at the next iteration is proportional
to the square of the error at the last iteration. Since we are concerned
with εk small, εk � 1, this means that under the right conditions,
the error goes down in dramatic fashion from iteration to iteration.

Notice that applying the technique requires that f is differentiable,
but the convergence guarantee depends on f be twice (continuously)
differentiable.

When f (x) is convex, twice differentiable, and has a minimizer, we
can find a minimizer by applying Newton’s method to the derivative.
We start at some initial guess x0, and then take

xk+1 = xk −
f ′(xk)

f ′′(xk)
. (1)

In this case if f is three-times continuously differentiable, we converge
to the global minimizer quadratically. Again, applying the method

1There are various technical conditions that f must obey for this result
to hold, including the second derivative being continuous and the first
derivative not being equal to zero. Also, the condition “close enough”
is characterized by looking at ratios of derivatives at the root and an
interval around it. The Wikipedia article on this is not bad: https:
//en.wikipedia.org/wiki/Newton’s_method.

47

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:06, November 3, 2021

https://en.wikipedia.org/wiki/Newton's_method
https://en.wikipedia.org/wiki/Newton's_method

relies on us being able to compute first and second derivatives of f ,
and the analysis relies on f being three-times differentiable.

We can interpret the iteration (1) above in the following way:

1. At xk, approximate f (x) using the Taylor expansion

f (x) ≈ f (xk) + f ′(xk)(x− xk) +
1

2
f ′′(xk)(x− xk)2.

2. Find the exact minimizer of this quadratic approximation. Tak-
ing the derivative of the expansion above and setting it equal
to zero yields the following optimality condition for x̂ to be a
minimizer:

(x̂− xk)f ′′(xk) = −f ′(xk).
This is just a re-arrangement of the iteration (1).

3. Take xk+1 = x̂.

This last interpretation extends naturally to the case where f (x) is a
function of many variables, f : RN → R. We know that if f is convex
and twice differentiable, we have a minimizer x? when ∇f (x?) = 0.
Newton’s method to find such a minimizer proceeds as above. We
start with an initial guess x0, and use the following iteration:

1. Take a Taylor approximation around f (xk):

f (x) ≈ f (xk) + 〈x− xk, g〉 +
1

2
(x− xk)

TH(x− xk)

where

g = ∇f (xk) = N × 1 gradient vector at xk

H = ∇2f (xk) = N ×N Hessian matrix at xk.

48

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:06, November 3, 2021

2. Find the exact minimizer x̂ to this approximation. This gives
us the problem

minimize
x∈RN

gT(x− xk) +
1

2
(x− xk)

TH(x− xk).

Since H is positive semidefinite (since we are assuming f is
convex), we know that the conditions for x̂ being a minimizer2

are
H(x− xk) = −g.

If H is invertible (i.e., H is positive definite), then we have a
unique minimizer and

x̂ = xk −H−1g.

3. Take xk+1 = x̂.

This procedure is often referred to as a pure Newton step, as it does
not involve the selection of a step size. In practice, however, it is
often beneficial to choose the step direction as

dk = − (∇2f (xk)
)−1∇f (xk),

and then choose a step size αk using a backtracking line search, and
then take

xk+1 = xk + αkdk

as before.

2Take the gradient of this new expression and set it equal to 0.

49

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:06, November 3, 2021

Convergence of Newton’s Method

Suppose that f (x) is twice-differentiable, M -smooth, and strongly
convex, i.e., the eigenvalues of the Hessian ∇2f (x) all lie within the
interval [m,M]. Moreover, assume that the Hessian is Lipschitz:

‖∇2f (x)−∇2f (y)‖ ≤ L‖x− y‖2.
(The norm on the left-hand side above is the standard operator
norm.) We will show that the Newton algorithm coupled with an
exact line search3 provides an estimate xk that is within ε of the
global minimizerx?, i.e.,

f (xk)− f (x?) ≤ ε,

provided that the number of iterations satisfies

k ≥ C1 (f (x0)− f (x?)) + log2 log2(ε0/ε),

where we can take the constants above to be C1 = 2M 2L2/m5 and
ε0 = 2m3/L2. Qualitatively, this says that Newton’s method takes a
constant number of iterations to converge to any reasonable precision
— we can bound log2 log2(ε0/ε) ≤ 6 (say) for ridiculously small values
of ε.

To establish this result, we break the analysis into two stages. In
the first, the damped Newton stage, we are far from the solution (as
measured by ‖∇f (xk)‖2), but we make constant progress towards
the answer. Specifically, we will show that in this stage,

f (xk)− f (xk+1) ≥ 1/C1.

3These results are easily extended to backtracking line searches; we are just
using an exact line search to make the exposition easier. See [BV04, Sec.
9.5.3] for the analysis with backtracking.

50

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:06, November 3, 2021

This implies that when we are far from the solution, we reduce the
gap f (xk) − f (x?) by at least 1/C1 at each iteration. It should be
clear, then, that the number of damped Newton steps is no greater
than C1 (f (x0)− f (x?)).

We will then show that when ‖∇f (xk)‖2 is small enough, the gap
closes dramatically at every iteration. We call this the quadratic
convergence stage, as we will be able to show that once the algorithm
enters this stage at iteration `, for all k > `,

‖∇f (xk)‖2 ≤ C2 · 2−2
k−`

,

where C2 = L/(2m2) is another constant.

Damped phase

We are in this stage when

‖∇f (xk)‖2 ≥ m2/L.

We take xk+1 = xk + αexactdk+1, where

dk+1 = −∇2f (xk)
−1∇f (xk),

and αexact is the result of an exact line search4:

αexact = arg min
0≤α≤1

f (xk + αdk+1).

We define the current Newton decrement as

λk =
√
∇f (xk)T(∇2f (xk))−1∇f (xk),

4For convenience, we are not letting α be larger than 1, just as in a back-
tracking method.

51

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:06, November 3, 2021

and note that λ2
k = −∇f (xk)

Tdk+1. Moreover, strong convexity
implies that the eigenvalues of (∇2f (xk))

−1 are at least 1/M and at
most 1/m, yielding the bounds

‖dk+1‖22 ≤
1

m
λ2
k and

1

M
‖∇f (xk)‖22 ≤ λ2

k,

which we will use below. From the definition of strong convexity, we
know that for any t we have

f (xk + tdk+1) ≤ f (xk) + 〈tdk+1,∇f (xk〉 +
M

2
‖tdk+1‖22

= f (xk)− tλ2
k +

Mt2

2
‖dk+1‖22

≤ f (xk)− tλ2
k +

Mt2

2m
λ2
k.

Plugging in t = m/M above yields

f (xk + αexactdk+1)− f (xk) ≤ f

(
xk +

m

M
dk+1

)
− f (xk)

≤ − m

2M
λ2
k

≤ − m

2M 2
‖∇f (xk)‖22

≤ − m5

2L2M 2
.

52

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:06, November 3, 2021

Quadratic convergence

When
‖∇f (xk)‖2 < m2/L,

we start to settle things very quickly. We will assume that in this
stage, we choose the step size to be αk = 1. In fact, you can show
that under very mild assumptions on the backtracking parameter
(c < 1/3, to be specific), backtracking will indeed not backtrack at
all and return αk = 1 (see [BV04, p. 490]).

We start by pointing out that by construction,

∇2f (xk)dk+1 = −∇f (xk),

and so by the fundamental theorem of calculus,

∇f (xk+1) = ∇f (xk + dk+1)−∇f (xk)−∇2f (xk)dk+1

=

∫ 1

0

∇2f (xk + tdk+1)dk+1 dt−∇2f (xk)dk+1

=

∫ 1

0

[∇2f (xk + tdk+1)−∇2f (xk)
]
dk+1 dt.

Thus, we obtain

‖∇f (xk+1)‖2 ≤
∫ 1

0

‖∇2f (xk + tdk+1)−∇2f (xk)‖ · ‖dk+1‖2 dt

≤
∫ 1

0

tL‖dk+1‖22 dt

=
L

2
‖[∇2f (xk)]

−1∇f (xk)‖22

≤ L

2m2
‖∇f (xk)‖22,

53

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:06, November 3, 2021

where the second inequality follows from the Lipschitz assumption
on the Hessian and the last inequality follows from the fact that the
maximum eigenvalue of (∇2f (xk))

−2 is 1/m2. Thus we have

L

2m2
‖∇f (xk+1)‖2 ≤

(
L

2m2
‖∇f (xk)‖2

)2

≤
(

1

2

)2

,

where the last inequality follows since ‖∇f (xk)‖2 ≤ m2/L. That
is, at every iteration, we are squaring the error (which is less than
1/2). If we entered this stage at iteration `, this means

L

2m2
‖∇f (xk)‖2 ≤

(
L

2m2
‖∇f (x`)‖2

)2k−`

≤
(

1

2

)2k−`

.

Then using the strong convexity of f ,

f (xk)− f (x?) ≤ 1

2m
‖∇f (xk)‖22 ≤

2m3

L2

(
1

2

)2k−`+1

.

The right hand side above is less than ε when

k − ` + 1 ≥ log2 log2(ε0/ε), ε0 = 2m3/L2,

so we spend no more than log2 log2(ε0/ε) iterations in this phase.

Note that

ε = 10−20ε0 ⇒ log2 log2(ε0/ε) = 6.0539.

54

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:06, November 3, 2021

Quasi-Newton Methods

A great resource for the material in this section is [NW06, Chapter
6].

Newton’s method is great in that it converges to tremendous accu-
racy in a very surprisingly small number of iterations, especially for
smooth functions. It is not so great in that each iteration is extremely
expensive. To compute the step direction,

dk = (∇2f (xk))
−1∇f (xk),

we have to

1. compute the gradient (an N × 1 vector),

2. compute the Hessian (an N ×N matrix),

3. invert the Hessian and apply the inverse to the gradient.

Typically, computing the gradient is reasonable (maybe O(N 2) or
O(N) computations and storage). Computing and inverting the
Hessian might be harder; in general, these operations take O(N 3)
computations, and this is something we will have to repeat at every
iteration. If N is very large, this can be completely impractical.

At the end of the day, the quadratic model is exactly that – a model.
A natural question to ask is if there are alternative quadratic models
that might be cheaper while retaining the essential efficacy of New-
ton. There are, and they are called quasi-Newton methods.

Instead of calculating (and inverting) the Hessian at every point, we
try to form a simple estimate of the (inverse of the) Hessian. We do
this by collecting information about the curvature of the functional

55

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:06, November 3, 2021

from the point we visit (and their gradients) as we iterate – basi-
cally, we are approximating the Hessian (the second derivative) by
measuring how the gradients (the first derivative) change from point
to point. What is great is that these Hessian estimates (and their
inverses) can be quickly updated from one iteration to the next, thus
avoiding the expensive matrix inversion.

The cost of these methods is comparable to gradient descent – along
with the gradient computation, we will have to do a few matrix-
vector multiplies at each iteration, the cost of which is again typi-
cally comparable to calculating ∇f (xk). Theoretically, their conver-
gence properties are better than gradient descent, but not as good as
Newton. In practice, they typically significantly outperform gradient
descent and they are practical for problem sizes where we dare not
even dream about computing the Hessian and inverting it.

Approximating the Hessian

Newton’s method works by forming a quadratic model around the
current iterate xk:

f̃k(x) = f (xk) + 〈x− xk, gk〉 +
1

2
(x− xk)

THk(x− xk).

The particular choices of gk = ∇f (xk) and Hk = ∇2f (xk) are mo-
tivated by Taylor’s theorem. We minimize the surrogate functional
above to compute the step direction

dk = −H−1
k gk,

choosing a step size αk, then moving

xk+1 = xk + αkdk.

56

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:06, November 3, 2021

We then repeat with a new quadratic model,

f̃k+1(x) = f (xk+1)+〈x−xk+1, gk+1〉+
1

2
(x−xk+1)

THk+1(x−xk+1).

Quasi-Newton methods operate in this same general framework, and
keep the same linear term gk = ∇f (xk). Rather than using the
Hessian, we ask only that our quadratic model yield gradients that
are consistent with the true gradient at both the current point xk+1

and the previous point xk. That is, we want

∇f̃k+1(xk+1) = ∇f (xk+1) (2)

and
∇f̃k+1(xk) = ∇f (xk). (3)

Note that
∇f̃k+1(x) = gk+1 + Hk+1(x− xk+1).

By setting gk+1 = ∇f (xk+1), (2) will hold automatically no matter
what we choose for Hk+1. Thus, we would like to choose Hk+1 so
that (3) also holds. This will occur provided that

gk+1 + Hk+1(xk − xk+1) = gk,

or more compactly
Hk+1sk = yk, (4)

where

sk := xk+1 − xk

yk := gk+1 − gk.

57

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:06, November 3, 2021

There are many choices for Hk+1 that satisfy (4), even if we add
the constraint that it be symmetric and positive definite (which we
need to ensure that Hk+1 is invertible, allowing us to compute dk+1.
In general, quasi-Newton methods choose Hk+1 so that it can be
easily computed from Hk – different update rules lead to different
quasi-Newton methods.

BFGS

Perhaps the most widely used quasi-Newton methods, and what is
viewed to be the most effective, is called the BFGS5 algorithm. BFGS
is similar to many other quasi-Newton methods in that it chooses
Hk+1 to be “close” to the previous Hk in a certain sense that turns
out to have computational advantages. In particular, the BFGS
update can be derived as the solution to the optimization problem

minimize
H

‖H −Hk‖W subject to HT = H , Hsk = yk,

where ‖ · ‖W is a particular weighted Frobenius norm (see [NW06]
for details.)

It turns out that this optimization problem has a closed form solution,
giving the BFGS update rule for constructing Hk+1 from Hk:

Hk+1 = Hk +
yky

T
k

yT
ksk
−Hksk(Hksk)

T

sT
kHksk

. (5)

At each iteration, we update Hk by adding two rank-1 matrices to
Hk. This is a critical since in the end we need to be able to invert
Hk+1 to be able to compute the next update. In general this would

5Named after Broyden, Fletcher, Goldfarb, and Shanno.

58

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:06, November 3, 2021

remain a computational challenge, but in this case since we already
know H−1

k (which would have been required at the previous step) and
Hk+1 is a low-rank update to Hk, there will be an efficient solution
to computing H−1

k+1. As we will see below, the cost of computing
Hk+1 will be the same order as a vector-matrix multiply (i.e., O(N 2)
instead of O(N 3)).

However, before we discuss the mechanics of computing H−1
k+1, let us

look a bit closer at the BFGS update in (5) and verify that it makes
sense. It is easy to check that Hk+1sk = yk is always satisfied:

Hk+1sk = Hksk +
yky

T
ksk

yT
ksk

−Hksks
T
kH

T
ksk

sT
kHksk

= Hksk + yk −Hksk
= yk,

where above we exploit the fact that Hk is symmetric.

It is also the case that if Hk is positive definite then Hk+1 will also
be positive definite, provided that f is strictly convex.6 This follows
from the monotonic gradient property of convex functions:

〈x− y,∇f (x)−∇f (y)〉 > 0.

Setting x = xk+1 and y = xk, this tells us that yT
ksk > 0. (This is

reassuring, since if yT
ksk = 0 then this update rule would be some-

what problematic.)

6Newton and quasi-Newton algorithms are typically motivated in the con-
text of twice differentiable functions so that the Hessian matrix always
exists. Strict convexity ensures that the Hessian is always invertible,
which we clearly need. If f is not strictly convex, we can actually still
use the BFGS algorithm, but we need to be a bit more careful to ensure
that yT

k sk > 0 and the Hessian remains invertible. We will see later that
this can instead be guaranteed as a part of the line search that selects the
step size αk.

59

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:06, November 3, 2021

Moreover, the fact that yT
ksk > 0 ensures that yky

T
k /y

T
ksk is positive

semidefinite. We show below that

Hk −
Hksk(Hksk)

T

sT
kHksk

(6)

is positive semidefinite. Thus Hk+1 is the sum of two positive
semidefinite matrices, and hence positive semidefinite as well. In
fact, we will be able to show that Hk+1 is strictly positive definite
by looking closely at the vectors that live in the nullspace of (6).

To see that (6) is positive semidefinite, recall that a symmetric matrix
M is positive semidefinite if xTMx ≥ 0 for all x 6= 0. Thus, we
would like to show that

xTHkx ≥
xTHksks

T
kHkx

sT
kHksk

.

Notice that the numerator in the fraction above can be written as
(xTHksk)

2. A fact that you can easily verify on your own is that for
any symmetric positive definite matrix M , xTMy defines a valid
inner product. Applying the Cauchy-Schwarz inequality with this
inner product yields

(xTHksk)
2 ≤ (xTHkx)(sT

kHksk)

and thus (6) is positive semidefinite, as desired.

From the above we have that Hk+1 must be positive semidefinite. We
can say more by looking at the eigenvalues of (6) that are zero. From
the argument above it is clear that we actually have a strict inequality
unless x is proportional to sk (since Cauchy-Schwarz is strict unless
the vectors are colinear). Said differently, the eigenvalues of (6) are all

60

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:06, November 3, 2021

strictly positive except for one, which corresponds to the eigenvector
sk. Thus, the only way that Hk+1 could have an eigenvector of zero
would be if sk also lived in the nullspace of yky

T
k /y

T
ksk, but this is

explicitly ruled out by the fact that yT
ksk > 0. Thus, Hk+1 must

actually be positive definite.

Now, we return to the issue of calculating H−1
k+1. Noting that Hk+1

can be expressed as the sum of Hk plus two additional terms, we
can apply the Woodbury matrix identity

(A + UCV)−1 = A−1 −A−1U (C−1 + V A−1U)−1V A−1

to “simplify” this inverse. After some tedious calculations we arrive
at the formula:

H−1
k+1 = H−1

k +
(sT

kyk + yT
kH

−1
k yk)(sks

T
k)

(sT
kyk)

2
−H−1

k yks
T
k + sky

T
kH

−1
k

sT
kyk

.

Note that the formula above requires computing a matrix-vector
product (H−1

k yk) and computing two rank-1 matrices (scaled ver-
sions of sks

T
k and sky

T
k), but all of these computations are O(N 2) as

opposed to O(N 3).

Above, we have spoken only about updates to the quadratic model.
The BFGS algorithm requires not only an initial guess x0, but also
an initial matrix H0. The most common choice here is take H0 = I.

61

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:06, November 3, 2021

This gives us the following algorithm:

BFGS

Input: x0, H
−1
0

Initialize: k = 0, g0 = ∇f (x0)

while not converged do

dk = −H−1
k gk

Select αk using a line search

xk+1 = xk + αkdk

gk+1 = ∇f (xk+1)

s = xk+1 − xk, y = gk+1 − gk, a = H−1
k y, γ = sTy

H−1
k+1 = H−1

k + γ+yTa
γ2

ssT − 1
γ
asT − 1

γ
saT

k = k + 1
end while

Convergence of BFGS

There are two main convergence results for BFGS with a step size
chosen using an appropriate line search.

Global convergence: If f is strongly convex, then BFGS with
backtracking converges to x? from any starting point x0 and initial
quadratic model determined by a positive definite matrix H0.

62

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:06, November 3, 2021

Superlinear local convergence: If f is strongly convex and the
gradient of f is M -smooth (i.e., the Hessian is Lipshitz), then when
we are close to the solution

‖xk+1 − x?‖2 ≤ ck‖xk − x?‖2
where ck → 0.

This is not quite the quadratic convergence of the Newton method,
but it can still be much, much faster than the linear rate given by
gradient descent. In practice, there is often times very little difference
between the convergence of BFGS and Newtons method.

Line search for BFGS

We can use similar line search methods for BFGS as we have seen
before in the context of gradient descent and Newton’s method, with
two important caveats.

First, in initializing a backtracking search it is important to set the
initial step size ᾱ = 1. This ensures that when we get close to a
solution we will be taking sufficiently large steps to ensure superlinear
convergence.

Second, in addition to the Armijo condition that

f (xk)− f (xk + αkdk) ≥ c1αk 〈dk,∇f (xk)〉 (7)

for some 0 < c1 < 1, it can be important to also impose an additional
“sufficient curvature” condition on the step size:

〈dk,∇f (xk + αkdk)〉 ≥ c2〈dk,∇f (xk)〉 (8)

63

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:06, November 3, 2021

for some c1 < c2 < 1. In the context of gradient descent, we often
ignore (8) and focus only on (7). However, in the context of BFGS (8)
also has an important role to play (especially if the objective function
being minimized is not strictly convex).

Specifically, (8) guarantees that yT
ksk > 0 at iteration k, which as

discussed above ensures that the BFGS update for Hk+1 is well-
defined and guarantees that Hk+1 remains positive definite. To see
this, note that for αk satisfying (8) we have

〈dk, gk+1〉 ≥ c2〈dk, gk〉,

which implies that

〈dk, gk+1 − gk〉 ≥ (c2 − 1)〈dk, gk〉.

Note c2 < 1, so that (c2 − 1) < 0. Moreover, since dk is a descent
direction, we have that 〈dk, gk〉 < 0, and thus the right-hand side
above is strictly positive. Thus

〈dk, gk+1 − gk〉 = 〈dk,yk〉 > 0.

Since sk = αkdk, this also shows that yT
ksk > 0, as desired.

References

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

[NW06] J. Nocedal and S. Wright. Numerical Optimization.
Springer, 2nd edition, 2006.

64

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:06, November 3, 2021

