
Accelerated first-order methods

In the last lecture we provided convergence guarantees for gradient
descent under two different assumptions. Under the stronger assump-
tion that f was both M -smooth and strongly convex with parameter
m, we showed that convergence to a tolerance of ε was possible in
O(log(1/ε)/ log(1/(1 − m/M))) iterations. Under the weaker as-
sumption where we only assume that f is M -smooth, we were able
to show that O(M/ε) iterations would be sufficient.

In this lecture we show that there are small changes we can make
to gradient descent that can dramatically improve its performance,
both in theory (resulting in improvements on the bounds above)
and in practice. We will talk about two of these here: the heavy ball
method and Nesterov’s “optimal algorithm.” Both of these strategies
incorporate the idea of momentum, although in subtly different ways.

Momentum

One way to interpret gradient descent is as a discretization to the
gradient flow differential equation

x′(t) = −∇f (x(t)),

x(0) = x0.
(1)

The solution to (1) is a curve that tracks the direction of steep-
est descent directly to the minimizer, where it arrives at a fixed
point (where ∇f (x) = 0). To see how gradient descent arises as a
discretization of (1), suppose we approximate the derivative with a
forward difference

x′(t) ≈ x(t + h)− x(t)

h
,
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for some small h. So if we think of xk+1 and xk as closely spaced
time points, we can interpret

1

α
(xk+1 − xk) = −∇f (xk),

as a discrete approximation to gradient flow. Re-arranging the equa-
tion above yields the gradient descent iteration xk+1 = xk−α∇f (xk).

The problem is once we perform this discretization, the path tends
to oscillate. One way to get a more regular path is to consider an
alternative differential equation that also has a fixed point where
∇f (x) = 0 but also incorporates a second-order term:

µx′′(t) + x′(t) = −∇f (x(t)). (2)

From a physical perspective, this is a model for a particle with mass
µ moving in a potential field with friction. This results in trajectories
that develop momentum (a heavy ball will move down a hill faster
than a light one in the presence of friction). In the case where µ = 0
we recover (1), but in general the inclusion of the mass term above
will result in a more accelerated trajectory towards the solution.

We can discretize the dynamics as before by setting

x′′(t) ≈ xk+1 − 2xk + xk−1

h1

, x′(t) ≈ xk − xk−1

h2

.

If we plug these into (2) and rearrange we obtain an update rule of
the form

xk+1 = xk + βk(xk − xk−1)− αk∇f (xk), (3)

where β = 1 − h1/h2µ and α = h1/µ. This is the core iteration
for the heavy ball method, introduced by Polyak in 1964 [Pol64].
The xk−xk−1 term above adds a little bit of the last step xk−xk−1
direction into the new step direction xk+1−xk – this method is also
referred to as gradient descent with momentum.
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Convergence of the heavy ball method

In the previous lecture we showed that if f (x) is M -smooth and
strongly convex, then we can obtain a bound of the form

f (xk+1)− f (x?) ≤
(

1− 1

κ

)k

(f (x0)− f (x?)) ,

where κ = M/m is an upper bound on the condition number of the
Hessian ∇2f (x). From this we can show that we can guarantee

f (xk)− f (x?)

f (x0)− f (x?)
≤ ε

provided that

k ≥ log(1/ε)

log(1/(1− 1/κ))
.

Using the inequality log(1 − x) ≤ −x we can replace this with the
simpler bound

k ≥ κ log (1/ε) .

While we will not dig into this here, there is also an alternative argu-
ment for the convergence of gradient descent that begins by showing
that

‖xk − x?‖2 ≤
(
κ− 1

κ + 1

)k

‖x0 − x?‖2.

Using a similar argument as before, we can use this to show that

‖xk − x?‖2
‖x0 − x?‖2

≤ ε

provided that
k & κ log(1/ε).
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The heavy ball method significantly improves on this result in terms
of its dependence on κ.

Specifically, under the same assumptions as before (M -smoothness
and strong convexity),one can show that for the heavy ball method
with

αk =
4

(
√
M +

√
m)2

and βk =

(√
M −

√
m√

M +
√
m

)2

we have the bound

‖xk − x?‖2 .

(√
κ− 1√
κ + 1

)k

‖x0 − x?‖2.

This can be translated into a guarantee that says

‖xk − x?‖2
‖x0 − x?‖2

≤ ε when k &
√
κ log(1/ε).

The difference with gradient descent can be significant. When κ =
102, we are asking for ≈ 100 log(1/ε) iterations for gradient descent,
as compared with ≈ 10 log(1/ε) from the heavy ball method.

Conjugate gradients

If you are familiar with the method of conjugate gradients (CG),
some of this may feel vaguely familiar.

The CG method was developed for minimizing quadratic functions
of the form f (x) = 1

2
xTQx−xTb. While it is normally presented in
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quite a different fashion, it ultimately boils down to being a variant of
the heavy ball method that is particularly well-suited to minimizing
quadratic functions. To see this connection, note that the core CG
iteration can be expressed1 as

dk = −∇f (xk) + βkdk−1

xk+1 = xk + αkdk,

where we start with d0 = −∇f (x0). In CG, the βk are set as

βk =
‖∇f (xk)‖22
‖∇f (xk−1)‖22

.

If f (x) is a quadratic function this choice ensures that at each itera-
tion dk is conjugate to d0, . . . ,dk−1. We won’t worry about saying
more about this beyond the fact that this is a good idea if f (x)
is quadratic. Once βk is fixed, αk can then be chosen using a line
search. Again, if f (x) is quadratic, there is a simple closed form
solution for this (which we have previously derived).

While CG is parameterized differently than the heavy ball method
as described in (3), they are fundamentally the same. To see this
note that we can also write

xk+1 = xk + αk (−∇f (xk) + βkdk−1)

= xk − αk∇f (xk) + αkβk
xk − xk−1

αk−1
.

1You will typically see this algorithm described specifically for the quadratic
case, in which case ∇f(x) = Qx− b and these calculations are carefully
broken up to re-use as many calculations as possible and avoid any un-
necessary matrix-vector multiplies, so it may initially look quite different.
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This is precisely the same iteration as (3), but with a slightly different
way of parameterizing the weight being applied to the momentum
term.

If you are trying to minimize a quadratic function, CG is the way
to go. The convergence guarantees you get for CG when minimizing
a quadratic function are just as good (but not actually better than)
what you have for the heavy ball method, but you don’t need to
know anything like Lipschitz or strong convexity parameters (which
would correspond to the maximum and minimum eigenvalues of Q)
in order to choose the αk and βk.

However, if you are trying to minimize anything else CG is not
necessarily a good choice. The choices for αk and βk are highly tuned
to the quadratic setting and can yield unstable results in general.

Nesterov’s “optimal” method

In the case where f is strictly convex, you can come up with examples
that show that the convergence rate of the heavy ball method can’t
be improved in general. For non-strictly convex f , the story is more
complicated.

Recall that we also have a convergence result for gradient descent in
the case where we only assume M -smoothness. In particular, last
time we showed that for a fixed step size α = 1/M ,

f (xk)− f (x?) ≤ M

2k
‖x0 − x?‖22.

Thus, to reduce the error by a factor of ε requires

k ≥ M

2ε
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iterations.

In 1983, Yuri Nesterov proposed a slight variation on the heavy ball
method that can improve on this theory, and often works better in
practice [Nes83].2 Specifically, recall the heavy ball method, which
can be represented via the iteration:

pk = βk (xk − xk−1)

xk+1 = xk + pk − αk∇f (xk),

where we start with p0 = 0. Nesterov’s method makes a subtle, but
significant, change to this iteration:

pk = βk (xk − xk−1)

xk+1 = xk + pk − αk∇f (xk + pk).
(4)

Notice that this is the same as heavy ball except that there is also a
momentum term inside the gradient expression. With this iteration,
we will show that (for a suitable choice of αk and βk)

f (xk)− f (x?) .
M

k2
‖x0 − x?‖22,

meaning that we can reduce the error by a factor of ε in

k &
1√
ε
,

iterations. When ε ∼ 10−4, this is much, much better than 1/ε.

Nesterov’s method is called “optimal” because it is impossible to beat
the 1/k2 rate using only function and gradient evaluations. There
are careful demonstrations of this in the literature (e.g., in [Nes04]).

2Note that this method remained to a large extent unknown in the wider
community until his 2004 publication (in English) of [Nes04].
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Note that in practice, αk can be chosen using a standard line search,
and a good choice of βk (both in practice, and as we will show below,
in theory) turns out to be

βk =
k − 1

k + 2
. (5)

This tells us that we should initially not provide much weight to the
momentum term, which makes intuitive sense as the initial gradients
may not be pushing us in the right direction, but as we proceed we
should have increased confidence that we are headed in the right
direction and increase how much weight we place on the momentum
term.

Significantly, note that in setting βk we do not need to know any-
thing about the function we are minimizing (such as strong convexity
parameters). This represents an important advantage compared to
the heavy ball method described above.
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Convergence analysis of Nesterov’s method

Analyzing the convergence of Nesterov’s method under the assump-
tion of M -smoothness is a little more involved than for gradient
descent, but the overall approach is the same and contains many of
the same elements, so we will start by recalling the main building
blocks that we used in analyzing gradient descent.

Consequences of convexity and M-smoothness
First, we recall some basic facts that hold for any x,y ∈ RN . Since
f is convex we have

f (y) ≥ f (x) + 〈y − x,∇f (x)〉. (6)

Since f is M -smooth we have

f (y) ≤ f (x) + 〈y − x,∇f (x)〉 +
M

2
‖y − x‖22. (7)

As a consequence of (7) (by setting y = x− 1
M
∇f (x)), we have that

for any x,

f

(
x− ∇f (x)

M

)
≤ f (x)− ‖∇f (x)‖22

2M
. (8)

Combining this with the upper bound on f (x) that you can obtain
by rearranging (6), we obtain

f

(
x− ∇f (x)

M

)
≤ f (y) + 〈x− y,∇f (x)〉 − ‖∇f (x)‖22

2M
. (9)

As we will see below, this inequality is the foundation of our analysis
of both gradient descent and Nesterov’s method. By plugging in
different choices for y (such as xk or x?) we can obtain both lower
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bounds on how much progress we make when we take a gradient
step as well as upper bounds on how far away we are from a global
optimum.

Convergence of gradient descent
Recall that in our analysis for gradient we assume a fixed step size
α = 1/M , resulting in an update rule of

xk+1 = xk −
∇f (xk)

M
.

Thus, setting x = xk and y = x? in (9) implies that

f (xk+1) ≤ f (x?) + M〈xk − x?,xk − xk+1〉 −
M

2
‖xk − xk+1‖22.

From this, if we define δk = f (xk) − f (x?) and do some algebraic
manipulation (see the previous notes) we get a bound of the form

δk+1 ≤
M

2

(
‖xk − x?‖22 − ‖xk+1 − x?‖22

)
.

This yields the telescopic sum

k−1∑
i=0

δi+1 ≤
M

2

(
k−1∑
i=0

‖xi − x?‖22 − ‖xi+1 − x?‖22

)

=
M

2

(
‖x0 − x?‖22 − ‖xk − x?‖22

)
≤ M

2
‖x0 − x?‖22.

The proof for gradient descent concludes by noting that

δk ≤
1

k

k−1∑
i=0

δi+1 ≤
M

2k
‖x0 − x?‖22.
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Convergence of Nesterov’s method
We will follow a similar argument to analyze Nesterov’s method. We
will again take αk = 1/M , but we will see that the analysis suggests
a natural choice for βk. With this choice of αk, the main iteration
from (4) is

xk+1 = xk + pk −
1

M
∇f (xk + pk).

It will be convenient to define

gk = − 1

M
∇f (xk + pk),

so that the main iteration becomes simply xk+1 = xk + pk + gk.
With this notation, by setting x = xk + pk in (9) we obtain the
bound

f (xk+1) ≤ f (y)−M〈xk − pk − y, gk〉 −
M

2
‖gk‖22. (10)

If we set y = x? in (10) and again let δk denote f (xk) − f (x?) we
obtain

δk+1 ≤
M

2

(
2〈x? − xk − pk, gk〉 − ‖gk‖22

)
. (11)

In our analysis of gradient descent, we then tried to rearrange an
analogous bound to obtain a telescopic sum, but that doesn’t quite
work here. Instead we will need to combine (11) with another bound.
Noting that δk − δk+1 = f (xk) − f (xk+1), we observe that setting
y = xk in (10) yields

δk − δk+1 ≥
M

2

(
2〈pk, gk〉 + ‖gk‖22

)
. (12)

We now consider the inequality formed by adding together (11) and
1 − λk times (12) (where λk is something we will choose later, but
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satisfies λk ≥ 1, so that this multiplication switches the direction of
the inequality). The left-hand side of the sum will be

δk+1 + (1− λk)(δk − δk+1) = λkδk+1 − (λk − 1)δk.

The right-hand side of the sum will be

M

2

(
2〈x? − xk − pk + (1− λk)pk, gk〉 − ‖gk‖22 + (1− λk)‖gk‖22

)
=
M

2

(
2〈x? − xk − λkpk, gk〉 − λk‖gk‖22

)
=
M

2λk

(
2〈x? − xk − λkpk, λkgk〉 − ‖λkgk‖22

)
=
M

2λk

(
‖x? − xk − λkpk‖22 − ‖x? − xk − λkpk − λkgk‖22

)
,

where the last equality follows from the easily verified fact that
2〈a, b〉 − ‖b‖22 = ‖a‖22 − ‖a − b‖22. If we make the substitution
uk = xk + λkpk, then combining these yields the inequality

λ2
kδk+1 − (λ2

k − λk)δk ≤
M

2

(
‖x? − uk‖22 − ‖x? − uk − λkgk‖22

)
.

(13)

We will now show that if we choose λk and βk appropriately, (13) will
yield a telescopic sum on both sides. This will occur on right-hand
side of (13) if

uk + λkgk = uk+1.

Noting that pk+1 = βk+1(xk+1 − xk) = βk+1(pk + gk), we can write

uk+1 = xk+1 + λk+1pk+1

= xk + pk + gk + λk+1βk+1(pk + gk)

= xk + (1 + λk+1βk+1)(pk + gk).
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Thus, to make uk+1 equal to uk+λkgk = xk+λk(pk+gk) we simply
need to have

λk = 1 + λk+1βk+1 ⇒ βk+1 =
λk − 1

λk+1

. (14)

For βk satisfying (14), if we sum (13) from i = 0 to k − 1 we thus
have

k−1∑
i=0

λ2
iδi+1 − (λ2

i − λi)δi ≤
M

2

(
‖x? − u0‖22 − ‖x? − uk‖22

)
≤ M

2
‖x? − u0‖22

=
M

2
‖x? − x0‖22. (15)

Next, one possible approach is to choose the λk so as to obtain a
telescopic sum on the left-hand side of the inequality as well. This is
the approach you will see most often in analyzing the convergence of
Nesterov’s method, but it is a little involved and leads to a recursive
formula for λk (and hence βk) instead of a simple closed form expres-
sion. Instead we will choose a simpler λk that yields essentially the
same bound.

Specifically, suppose that we set λk = (k + 2)/2. First, note that
from (14) this yields

βk+1 =
k+2
2
− 1

k+1
2

=
k

k + 3
,

which coincides with the rule for setting βk given in (5). Next, note
that we can write
k−1∑
i=0

λ2
iδi+1−(λ2

i−λi)δi = (λ0−λ2
0)δ0+λ2

k−1δk +
k−1∑
i=1

(λ2
i−1−λ2

i +λi)δi.
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Plugging in λi = (i + 2)/2 yields

k−1∑
i=0

λ2
iδi+1 − (λ2

i − λi)δi =

(
k + 1

2

)2

δk +
1

4

k−1∑
i=0

δi

≥
(
k + 1

2

)2

δk,

where the inequality follows since δi = f (xi)−f (x?) ≥ 0. Combining
this lower bound with (15) yields(

k + 1

2

)2

δk ≤
M

2
‖x? − x0‖22

or equivalently

f (xk)− f (x?) ≤ 2M

(k + 1)2
‖x? − x0‖22,

which is exactly the O(1/k2) convergence rate we wanted.
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