Line search methods

Given a starting point x; and a direction dj,, we still need to decide
on «y, i.e., how far to move. With x;, and d;, fixed, we can think of
the remaining problem as a one-dimensional optimization problem
where we would like to choose a to minimize (or at least reduce)

o) = f(x, + ady) .

Note that we don’t necessarily need to find the true minimum — we
aren’t even sure that we are moving in the right direction at this
point — but we would generally still like to make as much progress
as possible before calculating a new direction dj, ;. There are many
methods for doing this, here are three:

Fixed step size

We can just use a constant step size o, = «. This will work if
the step size is small enough, but usually this results in using more
iterations than necessary. This is actually a very commonly used
approach since if your problem is small enough, this may not matter.

Exact line search

Another approach is to solve the one-dimensional optimization pro-
gram

minimize ().
There are a variety of strategies you could take here (e.g., apply-
ing a bisection search or some similar one-dimensional optimization
strategy) to try to solve this problem. This is typically not worth

21

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 15:17, October 6, 2021

the trouble. However, there are certain instances (e.g., least squares
and other unconstrained convex quadratic programs) when it can be
solved analytically, in which case it is generally a good idea.

Example: Minimizing a quadratic function Suppose we
wish to solve the optimization problem

|
minimize émTQZI; —x'b.
T

For example, this optimization problem arises in the context of solv-
ing least squares problems. Suppose that we have selected a step
direction dj. In this case

(o) = %(mk +ady) ' Q(x), + ady) — (), + ady)'b.

This is a quadratic function of «, and thus we can compute the
optimal step size by finding the a such that ¢'(ar) = 0. By expanding
out the quadratic term, it is easy to show that

¢'(a) = ad, Qd; + d, Qx;, — d.b.
Setting this equal to zero and solving for « yields the step size

_dy(b—Quxy)
A — T .
d, Qd,

Backtracking

Exact line search is generally not worth the trouble, but the problem
with a fixed step size is that we cannot guarantee convergence of « is
too large, but when « is too small we may not make much progress on

22

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 15:17, October 6, 2021

each iteration. A popular strategy is to do a rudimentary search for
an « that gives us sufficient progress as measured by the inequality

flxy) — f(@xp + ady) > —cia(dy,, V f (1)),

where ¢; € (0,1). This is known as the Armijo condition. For a
satisfying the inequality we have that the reduction in f is propor-
tional to both the step length « and the directional derivative in the
direction dj,.

Note that we can equivalently write this condition as
¢(a) < h(a) = ¢(0) + crad'(0).
Recall that from convexity, we also have that
¢(a) = gla) == ¢(0) + ad'(0).

Since ¢; < 1, we always have ¢(a) < h(a) for sufficiently small .
An example is illustrated below:

allowable «

23

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 15:17, October 6, 2021

We still haven’t said anything about how to actually use the Armijo
condition to pick a. Within the set of allowable a satisfying the
condition, the (guaranteed) reduction in f is proportional to a, so
we would generally like to select « to be large. Note that the Armijo
condition protects us against setting a to be too large, however, it
actually does not rule out setting a to be extremely small, which can
be just as much of a problem in practice.

This inspires the following very simple backtracking algorithm:
start with a large step size of a = &, and then decrease by a factor
of p until the Armijo condition is satisfied.

Backtracking line search
Input: @, di, Vf(x), @ >0, ¢ € (0,1), and p € (0, 1).
Initialize: a = &
while Armijo condition not satisfied do
a = pa

end while

The backtracking line search tends to be cheap, and works very well
in practice. A common choice for & is & = 1, but this can vary
somewhat depending on the algorithm. The choice of ¢; can range
from extremely small (107, encouraging larger steps) to relatively
large (0.3, encouraging smaller steps), and typical values of p range
from 0.1, (corresponding to a relatively coarse search) to 0.8 (corre-
sponding to a finer search).

24

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 15:17, October 6, 2021

Convergence of gradient descent

Here we will discuss convergence guarantees for gradient descent,
i.e., the version of our iterative algorithm where we set

resulting in the update rule

T = — 4V f(Th) .

It is hard to say much about the convergence properties of this ap-
proach for arbitrary convex functions. However, if f satisfies certain
“regularity conditions”, then we can get very nice guarantees, even
for a fixed step size. Here we will look at two different kinds of regu-
larity assumptions on f, and translate them into convergence rates.
Throughout, we will assume that f is differentiable everywhere.'

Smoothness and strong convexity

We will consider two related kinds of assumptions on f. One is that
f is smooth in a certain sense. Qualitatively, we would just like
to assume that the gradient changes in a controlled manner as we
move from point to point. Quantitatively, we will assume that f has
a Lipschitz gradient. This means that there exists an M > 0

such that
IVf(x) = VYl < Mz -y, (1)

'Methods for nondifferentiable f(x) are also of great interest, and will be
covered later in the course. These methods are not much more involved
algorithmically (although, you obviously will have to replace the gradient
with something else), but they are slightly harder to analyze.

29

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 15:17, October 6, 2021

for all ¢,y € RY. We will say that such a function is M-smooth
or strongly smooth.

One can show that f obeying (1) is actually equivalent to saying that

fy) < fl@)+ly -2 Vi) + Sy -zl @
for all z,y € RY.

This provides some intuition for what kind of structure the Lipschitz
gradient condition imposes on f. Recall that for any convex function,

we have that
fly) = flx) +{y — =, V(x)),

so if f is convex, then at any point @ we can bound f from below
by a linear approximation. If f has a Lipschitz gradient, (2) but we
can also bound it from above using a quadratic approximation.

In the case that f is twice differentiable, one can also show that (2)
is equivalent to

Vi f(z) < MT,

i.e., that the largest eigenvalue of the Hessian is bounded by M for
all &. Note, however, that the Lipschitz gradient condition and the
analysis below does not require f to be twice differentiable.

A closely related assumption that we can make is to assume that
f is strongly convex (with strong convexity parameter m > 0),
meaning that

fy) = f@) +y—2. V@) + Sly -} @)

26

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 15:17, October 6, 2021

for all ¢,y € RY. This tells us that not only is f bounded below by a
linear approximation (since it is convex), but also by a (nontrivial)
convex quadratic approximation. Note also that strong convexity
implies strict convexity, but strict convexity does not necessarily im-
ply strong convexity.

In the case that f is twice differentiable, strong convexity is equiva-
lent to

V2 f(x) = ml.

That is, the eigenvalues of the Hessian are bounded below by m > 0
for all . When combined with the assumption of M-smoothness,
this bounds the conditioning of the Hessian matrix so that its eigen-
values are bounded between m > 0 and M < oo. However, again
note that strong convexity does not require f to be twice differen-
tiable.

Convergence of gradient descent for smooth and strongly
convex f

If you look back to when we analyzed the convergence of gradient
descent for the case where f was a quadratic function (as in least
squares), you may notice that our analysis centered entirely around

the identity
fly) = f(@) + (y — @ V(@) + (v — @) Hly —)

where in this case H = V*f(x). In fact, the main convergence
result follows from a pair of inequalities that follow directly from this
identity. Specifically, that

fly) < flx) +(y — =, Vfx)) +>‘max_(H)

=y -

27

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 15:17, October 6, 2021

and

fly) > f(@) + (y — 2, V(@) + Ame)

By assuming that f is M-smooth and strongly convex, we are essen-
tially making precisely the assumptions that we need to reproduce
this analysis. Another perspective is that our assumptions imply
that f is not too different from a quadratic function, and so we have
similar convergence guarantees. Specifically, using the same basic ap-
proach as before one can show (try this at home!) that for ay, = 1/M
we have

ly — x|l

m

flaw) - fat) < (1= 32) (law) — fla).

This is an example of linear convergence, and using a simple argu-
ment from the homework this implies that

flxr) — f(x") <

as long as

log((f (o) — f(@*))/e)
"2 gL/ —myaD))

Convergence of gradient descent for smooth f

[t is also possible to get weaker convergence guarantees without mak-
ing the assumption that f is strongly convex. In the technical ad-
dendum at the end of these notes, we show that by combining the
assumption of M-smoothness with the definition of convexity and
doing some clever manipulations, we can get a guarantee of the form

M

flae) — fla) < Slle — 2|

28

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 15:17, October 6, 2021

Thus, for M-smooth functions, we can guarantee that the error is
O(1/k) after k iterations. Another way to put this is to say that we
can guarantee accuracy

flay) — f@") <e
as long as
M
k> 2—\\330 —z’[|5.
€

Note that if € is very small, this says we can expect to need a very
large number of iterations. This is much slower convergence than
what we obtained by assuming strong convexity — it is O(e ™) versus
O(loge™). As an example, if we wanted to set e = 107% ¢! = 10°
(versus loge ! & 14). Of course, to get the stronger guarantee we
had to make a much stronger assumption (strong convexity), which
may not always be applicable depending on the objective function
you are optimizing.

Technical Details: Convergence analysis for //-smooth
functions

Here we provide the convergence analysis for gradient descent on M-
smooth functions that are not necessarily strongly convex. From our

assumption that f is M-smooth, we know that f satisfies (2), and
thus plugging in y = @;.1, we obtain

f(@ri1) < flap) + <_%vf(wk>a Vf(wk)>

= flwe) ~ IV F @)l + ianeck)HQ
= flwx) — 5 IV @) ()

2

|MVf ;)

2

29

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 15:17, October 6, 2021

Moreover, by the convexity of f,
f(x) < f(x") + (T — ", V f(z1)),

where x* is a minimizer of f, and so we have

f@pn) < f@7) + {zp — 2", Vf(z)) - ﬁ\\vf(wk)!@-

Substituting V f(x;) = M (x) — xpy1) then yields

M
fl@p) — fla") < M(@p — ", @) — @pir) — 7“%—@‘“1”3- (5)

We can re-write this in a slightly more convenient way using the fact
that

la — b[f; = [lall; — 2(a, b) + [|b]|;
and thus

2(a,b) — [, = |lal; — [la — b]>.
Setting @ = @, — «* and b = x; — x; and applying this to (5),
we obtain the bound

* M * *
f(@r1) — flx") < -5 (ler — 2|l = [l — 2])3) -
This result bounds how far away f(a;. 1) is from the optimal f(x*) in
terms (primarily) of the error in the previous iteration: ||a;, — a*||3.
We can use this result to bound f(x;.1) — f(2*) in terms of the

initial error ||@y — x*||3 by a clever argument.

Specifically, this bound holds not only for iteration k, but for all
iterations ¢z =1, ..., k, so we can write down k inequalities and then
sum them up to obtain

k

M k
> fla) — fla) < 5 (Z |,y — x*||? — ||@; — w*||§> .

1=1

30

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 15:17, October 6, 2021

The right-hand side of this inequality is what is called a telescopic
sum: each successive term in the sum cancels out part of the previous
term. Once you write this out, all the terms cancel except for two
(one component from the ¢ = 1 term and one from the ¢ = k term)

giving us:

k

> flm) — flah) <

1=1

(llwo = 2l = llz — 2|J2)

A
SIS

o — a*||>-

Since, as noted above, f(x;) is monotonically decreasing in 4, we also
have that

and thus
flze) — fla") < ||z — 2*[]3,

which is exactly what we wanted to show.

31

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 15:17, October 6, 2021

