
Why convexity?

Convex functions satisfy a number of properties that are desirable
in the context of optimization. Here we will first discuss two funda-
mental facts.

Recall the unconstrained optimization problem:

minimize
x∈RN

f (x). (1)

Below we will first show that for any convex f , if x? is a local min-
imizer of (1), then it is also a global minimizer. Second, under the
conditions that f (x) is convex and differentiable, we will show that
x? is a minimizer of (1) if and only if the derivative is equal to zero:

x? is a global minimizer ⇔ ∇f (x?) = 0.

Something similar is also true for non-differentiable (but still convex)
f . We will explore this later in the course.

Local minima are also global minima

The most important property of convex functions from an optimiza-
tion perspective is that any local minimum is also a global minimum,
or more formally:

Let f (x) be a convex function on RN , and suppose that x? is a
local minimizer of f in that there exists an ε > 0 such that

f (x?) ≤ f (x) for all ‖x− x?‖2 ≤ ε.

Then x? is also a global minimizer: f (x?) ≤ f (x) for all x ∈ RN .
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To prove this, suppose that x? is a local minimum. We want to show
that f (x?) ≤ f (x′) for any x′. We already have that f (x?) ≤ f (x′)
if ‖x′ − x?‖2 ≤ ε, so all we need to do is show that this also holds
for x′ with ‖x′ − x?‖2 > ε. Note that from convexity, we have

f (θx′ + (1− θ)x?) ≤ θf (x′) + (1− θ)f (x?)

for any θ ∈ [0, 1]. This has to hold for any θ ∈ [0, 1], and in partic-
ular, it must hold for θ = ε/‖x′ − x?‖2 (which is less than 1 since
‖x′ − x?‖2 > ε). For this choice of θ we have

‖θx′ + (1− θ)x? − x?‖2 = θ‖x′ − x?‖2 = ε,

thus θx′ + (1 − θ)x? lives in the neighborhood where x? is a local
minimum, and hence

f (x?) ≤ f (θx′ + (1− θ)x?).

Combining this with the inequality above we have

f (x?) ≤ θf (x′) + (1− θ)f (x?).

Rearranging this gives us θf (x?) ≤ θf (x′), or simply f (x?) ≤ f (x′),
which is exactly what we wanted to prove.

Note that for functions f that are not convex, any number of things
are possible. It might be the case that there is only one local mini-
mum and that it corresponds to the global minimum. It might also
be that there are many local minima, but that all of them achieve the
same value of f and hence they are all global minima. We are typ-
ically not so lucky, though. In many conconvex problems there can
be many local minima which are very far from actually minimizing
f .

14

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 14:30, September 28, 2021



Optimality conditions for differentiable functions

We have just shown that if we want to find a global minimum of
a convex function, it is sufficient to find any local minimum. This
raises the question: How do we know when we have found a minimum
of a function (local or global)? Here we provide an answer to this
question in the special case where f is differentiable.

Let f be convex and differentiable on RN . Then x? solves

minimize
x∈RN

f (x)

if and only if ∇f (x?) = 0.

To prove this, we first assume that x? is a local minimum of f and
show that this implies that ∇f (x?) = 0. This follows almost imme-
diately. If x? is a local minimum of f , then this means that every
direction must be an ascent direction, i.e., 〈u,∇f (x)〉 ≥ 0 for all
u ∈ RN . However, the only way we can make 〈u,∇f (x?)〉 ≥ 0 for
all u is if ∇f (x?) = 0. Thus, for differentiable f

x? is a (local or global) minimizer ⇒ ∇f (x?) = 0.

Note that this fact does not actually require f to be convex.

Now we will show that for convex f we also have that ∇f (x?) = 0
implies that f is a minimizer. Specifically, recall that if f is convex
and differentiable then

f (x) ≥ f (x′) + 〈x− x′,∇f (x′)〉
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for all x,x′ ∈ RN . By making the substitution x = x? + u and
x′ = x? we can equivalently write this as

f (x? + u) ≥ f (x?)− 〈u,∇f (x?)〉,

for all choices of u ∈ RN . But if ∇f (x?) = 0 then this is simply

f (x? + u) ≥ f (x?)

for all u. This now makes it clear that for convex f

∇f (x?) = 0 ⇒ x? is a (global) minimizer.

This fact lies at the heart of most algorithms for unconstrained convex
optimization similar to gradient descent – if we can find an x that
makes the gradient vanish, then we have solved the problem.

Existence of minimizers

Before turning to actual algorithms for unconstrained optimization,
there are a couple of technical issues to consider. First, it is important
to realize that it is not always the case that a convex function will
actually have a minimizer. That is, there may be sometimes be no
x? such that f (x?) ≤ f (x) for all x ∈ RN . For example, f (x) =
e−x does not have a minimizer on the real line, even though it is
convex (and differentiable). We will not worry much about this in
this course, but it is worth realizing that one can encounter a convex
optimization problem for which no solution exists.
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Uniqueness of minimizers

It is also important to note that even when a minimizer does exist,
that does not always guarantee that it is unique. That is, there
might be multiple distinct x that achieve the minimum value of f .
However, there are certainly lots of scenarios where there is only
one unique minimizer. One prominent example is when f is strictly
convex.

Let f be strictly convex on RN . If f has a global minimizer, then
it is unique.

This is easy to argue by contradiction. Let x? be a global minimizer,
and suppose that there existed an x̂ 6= x? with f (x̂) = f (x?). But
then there would be many x which achieve smaller values, as for all
0 < θ < 1,

f (θx? + (1− θ)x̂) < θf (x?) + (1− θ)f (x̂)

= f (x?).

This would contradict the assertion that x? is a global minimizer,
and hence no such x̂ can exist.
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Algorithms for unconstrained minimization

One of the benefits of minimizing convex functions is that we can
often use very simple algorithms to find solutions. Specifically, we
want to solve

minimize
x∈RN

f (x),

where f is convex. For now we will assume that f is also differen-
tiable.1 We have just seen that, in this case, a necessary and sufficient
condition for x? to be a minimizer is that the gradient vanishes:

∇f (x?) = 0.

Thus, we can equivalently think of the problem of minimizing f (x)
as finding an x? that ∇f (x?) = 0. As noted before, it is not a given
that such an x? exists, but for now we will assume that f does have
(at least one) minimizer.

Every general-purpose optimization algorithm we will look at in this
course is iterative — they will all have the basic form:

Iterative descent

Initialize: k = 0, x0 = initial guess
while not converged do

calculate a direction to move dk

calculate a step size αk ≥ 0
xk+1 = xk + αk dk

k = k + 1
end while

1We will also be interested in cases where f is not differentiable. We will
revisit this later in the course.
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The central challenge in designing a good algorithm mostly boils
down to computing the direction dk. As a preview, here are some
choices that we will discuss:

1. Gradient descent: We take

dk = −∇f (xk) .

This is the direction of “steepest descent” (where “steepest”
is defined relative to the Euclidean norm). Gradient descent
iterations are cheap, but many iterations may be required for
convergence.

2. Accelerated gradient descent: We can sometimes reduce
the number of iterations required by gradient descent by incor-
porating a momentum term. Specifically, we first compute

pk = xk − xk−1

and then take

dk = −∇f (xk) +
βk
αk

pk

or

dk = −∇f (xk + βkpk) +
βk
αk

pk.

The “heavy ball” method and conjugate gradient descent use
the former update rule; Nesterov’s method uses the latter. We
will see later that by incorporating this momentum term, we
can sometimes dramatically reduce the number of iterations
required for convergence.

3. Newton’s method: Gradient descent methods are based on
building linear approximations to the function at each iteration.
We can also build a quadratic model around xk then compute
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the exact minimizer of this quadratic by solving a system of
equations. This corresponds to taking

dk = −
(
∇2f (xk)

)−1∇f (xk) ,

that is, the inverse of the Hessian evaluated at xk applied to
the gradient evaluated at the same point. Newton iterations
tend to be expensive (as they require a system solve), but they
typically converge in far fewer iterations than gradient descent.

4. Quasi-Newton methods: If the dimension N of x is large,
Newton’s method is not computationally feasible. In this case
we can replace the Newton iteration with

dk = −Qk∇f (xk)

where Qk is an approximation or estimate of (∇2f (xk))
−1

.
Quasi-Newton methods may require more iterations than a
pure Newton approach, but can still be very effective.

Whichever direction we choose, it should be a descent direction,
i.e., dk should satisfy

〈dk,∇f (xk)〉 ≤ 0.

Since f is convex, it is always true that

f (x + αd) ≥ f (x) + α 〈d,∇f (x)〉 ,

and so to decrease the value of the functional while moving in direc-
tion d, it is necessary that the inner product above be negative.
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