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We will begin our discussion of solving general optimization problems
by considering the unconstrained case. Our template problem is

minimize
x∈RN

f (x), (1)

where f : RN → R. We say that such a problem is unconstrained
because any possible x ∈ RN is allowable. We will consider the case
where only a subset of RN is allowable once we have an idea of how
to solve problems in this simpler setting.

Our primary interest will be in developing efficient procedures that
are guaranteed to solve (1). However, we will see that this might not
always be possible. Without placing any restrictions on the kind of
function f we are trying to minimize, we cannot say much of anything
– even if we restrict ourselves to continuous functions, there are some
pathological functions f for which it will be difficult if not impossible
to find the minimum in any efficient manner.

We will see that an important class of functions for which we gen-
erally can solve (1) using efficient algorithms is the set of convex
functions. As we will see below, convex functions satisfy some desir-
able properties that make them much easier to work with.
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Convex sets

Before giving a formal definition of convex functions we will first
introduce some of the mathematical fundamentals of convex sets.

A set C ⊂ RN is convex if

x,y ∈ C ⇒ (1− θ)x + θy ∈ C for all θ ∈ [0, 1].

In English, this means that if we travel on a straight line between
any two points in C, then we never leave C.

These sets in R2 are convex:

These sets are not:

2

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 14:50, September 28, 2021



Examples of convex (and nonconvex) sets

• Subspaces. Recall that if S is a subspace of RN , then
x,y ∈ S ⇒ ax + by ∈ S for all a, b ∈ R.
So S is clearly convex.

• Affine sets. Affine sets are just subspaces that have been offset
by the origin:

{x ∈ RN : x = y + v, y ∈ T }, T = subspace,

for some fixed vector v.

• Bound constraints. Rectangular sets of the form

C = {x ∈ RN : `1 ≤ x1 ≤ u1, `2 ≤ x2 ≤ u2, . . . , `N ≤ xN ≤ uN}

for some `1, . . . , `N , u1, . . . , uN ∈ R are convex.

• The simplex in RN

{x ∈ RN : x1 + x2 + · · · + xN ≤ 1, x1, x2, . . . , xN ≥ 0}

is convex.

• Any subset of RN that can be expressed as a set of linear in-
equality constraints

{x ∈ RN : Ax ≤ b}

is convex.

• Norm balls. If ‖ · ‖ is a valid norm on RN , then

Br = {x : ‖x‖ ≤ r},

is a convex set.
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• Ellipsoids. An ellipsoid is a set of the form

E = {x : (x− x0)
TP −1(x− x0) ≤ r},

for a symmetric positive-definite matrix P . Geometrically, the
ellipsoid is centered at x0, its axes are oriented with the eigen-
vectors of P , and the relative widths along these axes are pro-
portional to the eigenvalues of P .

• The set
{x ∈ R2 : x2

1 − 2x1 − x2 + 1 ≤ 0}
is convex. (Sketch it!)

• The set
{x ∈ R2 : x2

1 − 2x1 − x2 + 1 ≥ 0}
is not convex.

• The set
{x ∈ R2 : x2

1 − 2x1 − x2 + 1 = 0}
is certainly not convex.

• Sets defined by linear equality constraints where only some of
the constraints have to hold are in general not convex. For
example

{x ∈ R2 : x1 − x2 ≤ −1 and x1 + x2 ≤ −1}

is convex, while

{x ∈ R2 : x1 − x2 ≤ −1 or x1 + x2 ≤ −1}

is not convex.
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Convex functions

Convex sets are a fundamental concept in optimization. An equally
important (and closely related) notion is that of convex functions.

We have already talked about convex functions in a loose sense. More
formally, a function f : RN → R is convex if

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y)

for all x,y ∈ RN and 0 ≤ θ ≤ 1.

This inequality is easier to interpret with a picture. The left-hand
side of the inequality above is simply the function f evaluated along
a line segment between x and y. The right-hand side represents a
straight line segment between f (x) and f (y) as we move along this
line segment, which for a convex function must lie above f .

f (θx + (1− θ)y)

θf (x) + (1− θ)f (y)

x y

f(x)

f(y)

We say that f is strictly convex if

f (θx + (1− θ)y) < θf (x) + (1− θ)f (y)
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for all x 6= y ∈ RN and 0 < θ < 1. Note that the only real difference
here is replacing “≤” with a strict inequality.

Note also that we say that a function f is concave if −f is convex,
and similarly for strictly concave functions. We are mostly interested
in convex functions, but this is only because we are mostly restricting
our attention to minimization problems. We justified this because
any maximization problem can be converted to a minimization one
by multiplying the objective function by −1. Everything that we say
about minimizing convex functions also applies maximizing concave
ones.

Examples:

• f (x) = x2 is (strictly) convex.

• affine functions f (x) = ax+ b are both convex and concave for
a, b ∈ R.

• exponentials f (x) = eax are convex for all a ∈ R.

• affine functions f (x) = 〈x,a〉+b are both convex and concave.

• any valid norm f (x) = ‖x‖ is convex.

• the sum f1(x) + f2(x) is convex if f1(x) and f2(x) are both
convex.
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The epigraph

A useful notion that illustrates the connection between convex sets
and convex functions is that of the epigraph of a function. The
epigraph of a function f : RN → R is the subset of RN+1 created by
filling in the space above f :

epi f =

{[
x
t

]
∈ RN+1 : x ∈ RN , f (x) ≤ t

}
.

epi f
f

It is not hard to show that f is convex if and only if epi f is a convex
set. This connection should help to illustrate how even though the
definitions of a convex set and convex function might initially appear
quite different, they actually follow quite naturally from each other.
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Operations that preserve convexity

There are a number of useful operations that we can perform on a
convex function while preserving convexity. Some examples include:

• Positive weighted sum: A positive weighted sum of con-
vex functions is also convex, i.e., if f1, . . . , fm are convex and
w1, . . . , wm ≥ 0, then w1f1 + . . . + wmfm is also convex.

• Composition with an affine function: If f is convex and
`(x) = Ax + b where A ∈ RN×D and b ∈ RN , then f (`(x))
is convex. Note that `(f (x)) is not necessarily convex.

• Composition with scalar functions: Consider the func-
tion f (x) = h(g(x)), where g : RN → R and h : R→ R:

– f is convex if g is convex and h is convex and non-decreasing.
Example: eg(x) is convex if g is convex.

– f is convex if g is concave and h is convex and non-
increasing.
Example: 1

g(x)
is convex if g is concave and positive.

• Max of convex functions: If f1 and f2 are convex, then
f (x) = max (f1(x), f2(x)) is convex.
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Equivalent characterizations of convexity

For a convex function f that is differentiable (meaning that the
gradient∇f (x) exists for all x ∈ RN), there are equivalent (possibly
simpler) ways to think about convexity.

First order conditions for convexity

If f is differentiable, then it is convex if and only if

f (x) ≥ f (x′) + 〈x− x′,∇f (x′)〉 (2)

for all x,x′ ∈ RN .

This can perhaps be understood more easily in a picture:

f (x)

g(x) = f (x′) + 〈x− x′,∇f (x′)〉

x

x = x′

Said again, (2) tells us that the linear approximation of f formed
from the tangent line (or plane, or hyperplane, as we move to higher
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dimensions) will always remain below f . This is an incredibly useful
fact, and if we never had to worry about functions that were not
differentiable, we might actually just take this as the definition of a
convex function.

We now prove this result. It is easy to show that if f is convex and
differentiable, then we must have (2). Specifically, since f is convex,
we have that for any θ ∈ [0, 1],

f (θx + (1− θ)x′) ≤ θf (x) + (1− θ)f (x′).

Rearranging this, we have

f (x) ≥ f (θx + (1− θ)x′)− (1− θ)f (x′)

θ

= f (x′) +
f (x′ + θ(x− x′))− f (x′)

θ
.

The inequality in (2) follows from this by taking the limit as θ → 0.
To see this, recall (from our review of multivariable calculus) that
the inner product between the gradient of f evaluated at x′ and
another vector u is the directional derivative of f in the direction of
u; setting u = x− x′ this is exactly the same as

〈x− x′,∇f (x′)〉 = lim
θ→0

f (x′ + θ(x− x′))− f (x′)

θ
.

We next need to show that if (2) holds, then f is convex. To do
so, let x 6= y be arbitrary vectors in RN and fix θ ∈ [0, 1]. Set
z = θx + (1− θ)y. From (2) we have

f (x) ≥ f (z) + 〈x− z,∇f (z)〉
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and
f (y) ≥ f (z) + 〈y − z,∇f (z)〉

If we multiply the first inequality by θ, the second by 1−θ, and then
add the two, then since θ(x− z) + (1− θ)(y − z) = 0, we obtain

θf (x) + (1− θ)f (y) ≥ f (z) = f (θx + (1− θ)y),

which is exactly the definition of a convex function.

Second-order conditions for convexity

Recall that we say that f : RN → R is twice differentiable if the
Hessian matrix ∇2f (x) exists for every x ∈ RN .

If f is twice differentiable, then it is convex if and only if the Hes-
sian matrix ∇2f (x) is positive semidefinite (meaning its eigenval-
ues are all nonnegative) for all x ∈ RN .

Note that for a one-dimensional function f : R→ R, the above con-
dition just reduces to f ′′(x) ≥ 0. You can prove the one-dimensional
version relatively easy (although we will not do so here) using the
first-order characterization of convexity described above and the def-
inition of the second derivative. You can then prove the general case
by considering the function g(t) = f (x+ tv). To see how, note that
if f is convex and twice differentiable, then so is g. Using the chain
rule, we have

g′′(t) = vT∇2f (x + tv)v.

Since g is convex, the one-dimensional result above tells us that
g′′(0) ≥ 0, and hence vT∇2f (x)v ≥ 0. Since this has to hold for
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any v, this means that ∇2f (x) is positive semidefinite. The proof
that ∇2f (x) being positive semidefinite implies convexity follows a
similar strategy.

Examples

• Quadratic functionals: The function

f (x) =
1

2
xTPx + qTx + r,

where P is symmetric, has ∇2f (x) = P , so f (x) is convex if
and only if P is positive semidefinite.

• Least-squares: The least squares objective function

f (x) = ‖Ax− b‖22,
where A is an arbitrary M×N matrix, has∇2f (x) = 2ATA,
so f (x) is convex for any A.

Strict convexity

It is relatively straightforward to show that for f differentiable, strict
convexity is equivalent to (2) holding with a strict inequality. It is
also easy to show that if ∇2f (x) is strictly positive definite (all of its
eigenvalues are strictly positive) for all x, then f is strictly convex.
For example, the function f (x) = x2 has f ′′(x) = 2 for all x and is
strictly convex.

However, it is not the case that f being strictly convex implies that
∇2f (x) is positive definite for all x. As an example, consider the
function f (x) = x4. This function is strictly convex, but also has
f ′′(0) = 0.
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