
Least squares for nonlinear regression

Let us return to linear regression, which has been one of the main
motivations for studying the least squares problem.

Recall that if we have data (xm, ym) for m = 1, . . . ,M , we want to
find a function f (x) such that f (xm) ≈ ym for each m = 1, . . . ,M .

As discussed on pages 3 and 4 of the course notes, we consider func-
tions of the form

f (x) =
N∑
n=1

αnφn(x),

where the “feature” functions φn(x) can be anything. We will ab-
breviate

φ(x) =


φ1(x)
φ2(x)

...
φN(x)


so that we can write f (x) = αTφ(x). We often callφ(x) the “feature
map.”

Recall1 that the least-squares estimate of the coefficients α1, . . . , αN
is the solution to

minimize
α∈RN

‖y −Aα‖22, (1)

1It is important to distinguish between the sample points xm,m = 1, . . . ,M
and the vector x ∈ RN that we have seen in the previous several notes.
In both regression and optimization, “x” is usually the argument of some
function, but whereas in optimization the function is what we are trying
to minimize (e.g., ‖y−Ax‖22), in regression we are most interested in the
function f(x) that fits the data! In these notes, α ∈ RN will once again
take the place of x.

68

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport and A. McRae. Last updated 13:10, September 20, 2021



where

A =


φ1(x1) φ2(x1) · · · φN(x1)
φ1(x2) φ2(x2) · · · φN(x2)

... ... . . . ...
φ1(xM) φ2(xM) · · · φN(xM)

 =


— φ(x1)

T —
— φ(x2)

T —
...

— φ(xM)T —

 ,
and

α =


α1

α2
...
αN

 .
Everything we have studied in lectures 3–5 can be applied to this
least squares optimization problem. We can set α̂ls = A†y (or use
Tikhonov regularization, etc.) and use it as our set of regression
coefficients.

Computation with kernel functions

Although, so far, we have mostly considered least squares in the case
that M ≥ N (i.e., the number of samples is larger than the number
of coefficients/features), we can also consider the “underdetermined”
case where there are more features than samples. In this case, the
matrix A has a nontrivial null space, so there is no unique solution
to (1). However, recall that even in this case, α̂ls = A†y gives us the
solution with minimal ‖α‖22. In these notes, we will use Tikhonov
regularization, which also gives us a unique solution by penalizing
‖α‖22 in the optimization problem.

Nonlinear least squares as presented above becomes difficult if the
number N of features is huge. Doing computations with the resulting
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extremely wide matrix A may be difficult. If fact, there are even
interesting situations where we want to estimate a function with an
infinite set of features! For example, consider a Fourier series

f (x) =
∞∑

n=−∞
bne

j2πnx

on the interval [0, 1]. In principle, there are infinitely many coeffi-
cients bn we would need to estimate in order to do regression with a
Fourier series.

To solve this problem, recall that in regression, we are less interested
in the coefficients α1, . . . , αN than in the function f (x) = φ(x)Tα
that they represent. Therefore, if α̂ is an estimated set of coefficients,
we only need some practical way to compute α̂Tφ(x) for any x.
Perhaps somewhat surprisingly, there are cases where we can still do
this without having to enumerate all the values in α̂!

The key tool we will use to accomplish this “trick” is the kernel
function associated with the feature map φ(x), defined as

k(x, x′) = φ(x)Tφ(x′).

What is interesting about many kernels is that we can often compute
k(x, x′) without having to ever compute φ(x) and φ(x′). Here are a
few examples:

• Polynomials. For x,x′ ∈ RP , one can check

k(x,x′) = (1 + xTx′)D

corresponds to a φ(x) that includes all the polynomials of de-
gree up to D in P variables.2 If D and P are moderately large,

2Consider, for example, D = P = 2, where all polynomials with degree up
to 2 in 2 variables (say, x and y) are a linear combination of 1, x, y, x2,
y2, and xy. We will work out this or another easy example in class.
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enumerating all the polynomial basis functions would be quite
impractical!

• Finite (truncated) Fourier series on an interval. If3

φ(x) =



e−j2πNx
...

e−j2πx

1
ej2πx

...
ej2πNx


,

then you can check that

k(x, x′) =
sin((2N + 1)π(x− x′))

sin(π(x− x′))

(this is the “Dirichlet kernel,” which you may recall from ECE
2026). Note that even if N is extremely large, the kernel
k(x, x′) is relatively easy to compute.

• Infinite Fourier series. More generally, if we have the

3As soon as complex numbers are involved, the notation becomes more
delicate, since we need to use complex conjugates in certain places. We
will ignore this detail for simplicity’s sake, but keep it in mind if you start
working things out. See the Wikipedia page on inner product spaces for
more details.
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infinite Fourier feature map

φ(x) =



...
λ−2e

−j2π·2x

λ−1e
−j2π·x

λ0

λ1e
j2π·x

λ2e
j2π·2x

...


for some set of coefficients λn, the kernel will be

k(x, x′) =
∞∑

n=−∞
λ2
ne

j2πn(x−x′),

which has a closed-form expression for some interesting choices
of the λn’s.

4

To see how to use the kernel, recall the Tikhonov regularization for-
mulas (now with α instead of x):

α̂tik = (ATA + δI)−1ATy = AT(AAT + δI)−1y.

Before, we primarily considered the first formula (involving ATA),
but now we will use the second, involving AAT . To see why, note
that ATA is an N × N matrix, and in the present context, N is
extremely large (or infinite). However, AAT is an M ×M matrix;
M is simply the number of samples (xm, ym) we have, so it should
be reasonable in size (or at least not infinite).

Furthermore, the entries ofAAT are simply (AAT)ij = φ(xi)
Tφ(xj) =

k(xi, xj). Therefore, the kernel k(x, x′) gives us a practical means to

4For those who have taken ECE 2026, note that this is essentially the
discrete-time Fourier transform (DTFT) of the signal x[n] = λ2

n.
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compute

ẑ =

 ẑ1...
ẑM

 = (AAT + δI)−1y,

which is part of the Tikhonov regularization formula.

How do we go from here to an estimated regression function f̂ (x)?
A näıve approach would be to compute α̂tik = ATẑ and then set
f (x) = α̂T

tikφ(x). However, as we have already discussed, this is
computationally challenging (or impossible). Instead, note that we
can calculate, for any point x and any vector z ∈ RM ,

(ATz)Tφ(x) = zT(Aφ(x))

= zT


— φ(x1)

T —
— φ(x2)

T —
...

— φ(xM)T —

φ(x)

= zT


φ(x1)

Tφ(x)
φ(x2)

Tφ(x)
...

φ(xN)Tφ(x)


=

M∑
m=1

zmk(xm, x).

where z =
[
z1 · · · zM

]T
. Therefore, we can express our regression

function estimate f̂ (x) as

f̂ (x) = α̂T
tikφ(x) = (ATẑ)Tφ(x) =

M∑
m=1

ẑmk(xm, x).

Thus we can calculate the Tikhonov regularized regression estimate f̂
using only the data ((xm, ym),m = 1, . . . ,M) and the kernel function
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k(x, x′)! Furthermore, computationally, the most difficult part is to
invert an M ×M matrix.

An extended Fourier series example

Consider the Fourier feature map

φ(x) =



...
λ−2e

−j2π·2x

λ−1e
−j2π·x

λ0

λ1e
j2π·x

λ2e
j2π·2x

...


,

where
λn = a−|n|/2, n = . . . ,−2,−1, 0, 1, 2, . . .

for some real number a ∈ (0, 1).

Given samples (xm, ym),m = 1, . . . ,M with xm ∈ [0, 1], we want to

find a function f̂ (x) = α̂Tφ(x) that fits the data.

What does Tikhonov regularization do in this setting? Note that for
any α, (Aα)m = αTφ(xm). Therefore, the Tikhonov regularization
optimization program is

minimize
α

M∑
m=1

(ym −αTφ(xm))2 + δ
∞∑

n=−∞
α2
n.

The regularization term penalizes all the αn equally, but because
the coefficients λn decay exponentially, the regularization penalizes
sinusoidal components of αTφ(x) more and more at higher (positive
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(b) a = 0.98

Figure 1: k(x, 0.5) for the Fourier series kernel with λn = a−|n|/2 for
different values of a.

and negative) frequencies. Thus Tikhonov regularization promotes
functions f that are “smooth” in the sense that most of their energy
is in lower frequencies. The degree of penalization depends on the
parameter a, as we will see more clearly in a moment.

To see how to compute the regression estimate f̂ , we first calculate
the kernel. If we treat λ2

n as a discrete-time signal and apply a DTFT,
we can show that the kernel function is

k(x, x′) =
∞∑

n=−∞
λ2
ne

j2πn(x−x′) =
1− a2

1− 2a cos(2π(x− x′)) + a2
.

Figure 1 show the kernel function for two values of a. Note that
for a closer to 1, the kernel is very “spiky” (and therefore able to
represent rougher functions), while for smaller a, the kernel is much
more gentle (and therefore can only represent smoother functions).
This makes sense given the fact that decreasing a penalizes large
frequencies more.
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(b) M = 300

Figure 2: Regression example with different sample sizes M .
a = 0.9, and δ = 1. The noise has a Gaussian distribution
with zero mean and variance σ2 = 1.

We can then do regression with the kernel k(x, x′). We write the
“kernel matrix” as

K = AAT =


k(x1, x1) k(x1, x2) · · · k(x1, xM)
k(x2, x1) k(x2, x2) · · · k(x2, xM)

... ... . . . ...
k(xM , x1) k(xM , x2) · · · k(xM , xM)


Then, recall that

f̂ (x) =
M∑
m=1

ẑmk(x, xm),

where

ẑ =

 ẑ1...
ẑM

 = (K + δI)−1y.

Figure 2 show an example with two different sample sizes. Note that
the larger sample size leads to a more accurate estimate.
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Beyond explicit feature maps

Kernels become most interesting when, unlike in the example of the
previous section, we don’t have a handy expression for the “feature
map” that generates the kernel.5

We showed how to get a kernel k(x, x′) from a feature map φ(x).
Since we never actually use φ(x) in our formulas, could we use a
kernel k(x, x′) without having to think about what feature map gen-
erates it?

It turns out that kernels generated by feature maps are special in
the following sense: for any positive integer M and set of points
x1, . . . , xM , the kernel matrix K on those points is positive semidef-
inite, that is,

zTKz ≥ 0 for all z ∈ RM .

You can verify this by recalling that K = AAT, so

zTKz = zTAATz = ‖ATz‖22 ≥ 0.

We call any symmetric function k(x, x′) that satisfies this property
a positive semidefinite (PSD) kernel. It turns out that any PSD
kernel has a corresponding feature map φ(x) that satisfies k(x, x′) =
φ(x)Tφ(x′).

The best choice of kernel depends on what kind of function one is
expecting to recover. One common choice is the Gaussian function

k(x, x′) = e−(x−x
′)2/r2,

where r > 0 is a scaling parameter. This works best with extremely
smooth functions, since the Gaussian kernel is very smooth.

5In fact, if we know the features exactly, we are often still better off com-
putationally if we just use a truncated feature map.
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Another choice (sometimes called the exponential kernel) is k(x, x′) =
e−|x−x

′|/r. This kernel is not even differentiable, so it can recover very
“rough” functions.

In both cases, the feature maps are infinite-dimensional and compli-
cated to describe.
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