Convergence of gradient descent *60*

The effectiveness of gradient descent depends critically on the "con-*5* ditioning" of H and the starting point. Consider the two examples below: *<u>ient</u>* descent de

(from Shewchuk, "... without the agonizing pain")

When the conditioning of H is poor, which here corresponds to the case where the ellipses denoting the level sets of our objective function are more eccentric or "squished", and we choose a bad starting point, convergence can take many iterations even in simple cases.

We can make this a bit more precise if we define mathematically what we really mean by the conditioning of H . The **condition number** of a matrix **H**, typically denoted $\kappa(H)$ is the ratio of the largest to smallest singular values of \boldsymbol{H} :

$$
\kappa(\boldsymbol{H}) = \frac{\sigma_{\max}(\boldsymbol{H})}{\sigma_{\min}(\boldsymbol{H})}.
$$

Note that by the $\sigma_{\text{max}}(H)$ we mean the largest singular value and by $\sigma_{\min}(\boldsymbol{H})$ we mean the smallest non-zero singular value, i.e., σ_R where R is the rank of H . For the case where H is a square matrix (as it is in our context), we can also equivalently write

$$
\kappa(\boldsymbol{H}) = \frac{\lambda_{\max}(\boldsymbol{H})}{\lambda_{\min}(\boldsymbol{H})},
$$

where $\lambda_{\text{max}}(H)$ and $\lambda_{\text{min}}(H)$ denote the largest and smallest eigenvalues of H , respectively. The condition number is a natural way of quantifying just how sensitive we are going to be to noise, but it also plays a key role in determining how computationally challenging it will be to solve the least squares problem using iterative methods.

Specifically, below we will provide a bound that shows how $f(\boldsymbol{x}_k)$ approaches $f(\boldsymbol{x}^*)$, where \boldsymbol{x}^* denotes the minimizer of f. Specifically, we will show that

$$
f(\boldsymbol{x}_{k+1}) - f(\boldsymbol{x}^*) \leq \left(1 - \frac{1}{\kappa(\boldsymbol{H})}\right) \left(f(\boldsymbol{x}_k) - f(\boldsymbol{x}^*)\right). \tag{1}
$$

Let's think a bit about what this says. Note that $1 - 1/\kappa(H)$ is always less than 1, so each iteration makes some progress. If $\kappa(H) \leq 2$, then at each iteration we make a lot of progress – cutting the error in half with each iteration. However, if $\kappa(H)$ is very large, this constant becomes very close to 1, indicating only minor improvements.

Convergence analysis

Recall that we are trying to minimize

$$
f(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^{\mathrm{T}}\boldsymbol{H}\boldsymbol{x} - \boldsymbol{x}^{\mathrm{T}}\boldsymbol{b}.
$$

Our convergence analysis will rely on one very useful property of $f(\boldsymbol{x})$, namely that we can write^{[1](#page-2-0)}

$$
f(\mathbf{y}) = f(\mathbf{x}) + (\mathbf{y} - \mathbf{x})^{\mathrm{T}} \nabla f(\mathbf{x}) + \frac{1}{2} (\mathbf{y} - \mathbf{x})^{\mathrm{T}} \mathbf{H} (\mathbf{y} - \mathbf{x}). \tag{2}
$$

We can easily verify this by just plugging in $\nabla f(\boldsymbol{x}) = \boldsymbol{H}\boldsymbol{x} - \boldsymbol{b}$ and simplifying. Specifically, note that we can equivalently write [\(2\)](#page-2-1) as

$$
f(\mathbf{y}) - f(\mathbf{x}) = (\mathbf{y} - \mathbf{x})^{\mathrm{T}} \nabla f(\mathbf{x}) + \frac{1}{2} (\mathbf{y} - \mathbf{x})^{\mathrm{T}} \mathbf{H} (\mathbf{y} - \mathbf{x}).
$$

The right-hand side of this equation can be simplified as

$$
(\mathbf{y}-\mathbf{x})^{\mathrm{T}}\nabla f(\mathbf{x}) + \frac{1}{2}(\mathbf{y}-\mathbf{x})^{\mathrm{T}}\mathbf{H}(\mathbf{y}-\mathbf{x})
$$

\n= $(\mathbf{y}-\mathbf{x})^{\mathrm{T}}(\mathbf{H}\mathbf{x}-\mathbf{b}) + \frac{1}{2}(\mathbf{y}-\mathbf{x})^{\mathrm{T}}\mathbf{H}(\mathbf{y}-\mathbf{x})$
\n= $\mathbf{y}^{\mathrm{T}}\mathbf{H}\mathbf{x}-\mathbf{y}^{\mathrm{T}}\mathbf{b}-\mathbf{x}^{\mathrm{T}}\mathbf{H}\mathbf{x}+\mathbf{x}^{\mathrm{T}}\mathbf{b}+\frac{1}{2}(\mathbf{y}^{\mathrm{T}}\mathbf{H}\mathbf{y}+\mathbf{x}^{\mathrm{T}}\mathbf{H}\mathbf{x}-2\mathbf{x}^{\mathrm{T}}\mathbf{H}\mathbf{y})$
\n= $\frac{1}{2}\mathbf{y}^{\mathrm{T}}\mathbf{H}\mathbf{x}-\mathbf{y}^{\mathrm{T}}\mathbf{b}-\frac{1}{2}\mathbf{x}^{\mathrm{T}}\mathbf{H}\mathbf{x}+\mathbf{x}^{\mathrm{T}}\mathbf{b}$
\n= $f(\mathbf{y})-f(\mathbf{x}),$

as desired.

¹This is like taking a second-order Taylor approximation to f around the point x , but since f is a quadratic function this is not an approximation but exact.

Equation [\(2\)](#page-2-1) immediately tells us something about how much progress we make at each iteration. If we plug in $y = x_{k+1}$ and $x = x_k$ to (2) , in which case $\boldsymbol{y} - \boldsymbol{x} = \boldsymbol{x}_{k+1} - \boldsymbol{x}_k = -\alpha_k \nabla f(\boldsymbol{x}_k)$, we obtain

$$
f(\boldsymbol{x}_{k+1}) = f(\boldsymbol{x}_k) - \alpha_k \|\nabla f(\boldsymbol{x})\|_2^2 + \frac{\alpha_k^2}{2} (\nabla f(\boldsymbol{x}_k))^{\mathrm{T}} \boldsymbol{H} \nabla f(\boldsymbol{x}_k).
$$
 (3)

Recall that we had set

$$
\alpha_k = \frac{\boldsymbol{r}_k^{\mathrm{T}} \boldsymbol{r}_k}{\boldsymbol{r}_k^{\mathrm{T}} \boldsymbol{H} \boldsymbol{r}_k},
$$

where $r_k = -\nabla f(\boldsymbol{x}_k)$. Plugging this into [\(3\)](#page-3-0) yields

$$
f(\boldsymbol{x}_{k+1}) = f(\boldsymbol{x}_k) - \frac{\|\boldsymbol{r}_k\|_2^4}{\boldsymbol{r}_k^{\mathrm{T}}\boldsymbol{H}\boldsymbol{r}_k} + \frac{1}{2} \left(\frac{\|\boldsymbol{r}_k\|_2^2}{\boldsymbol{r}_k^{\mathrm{T}}\boldsymbol{H}\boldsymbol{r}_k}\right)^2 \boldsymbol{r}_k^{\mathrm{T}}\boldsymbol{H}\boldsymbol{r}_k
$$

$$
= f(\boldsymbol{x}_k) - \frac{1}{2} \frac{\|\boldsymbol{r}_k\|_2^4}{\boldsymbol{r}_k^{\mathrm{T}}\boldsymbol{H}\boldsymbol{r}_k}.
$$

This tells us that we are guaranteed to make at least *some* progress at each iteration. Precisely how much depends on this rather strange looking function of r_k , but we can actually get a much simpler expression by recalling that for any symmetric, positive semidefinite matrix \boldsymbol{H} we have that

$$
\lambda_{\min}(\boldsymbol{H}) \leq \frac{\boldsymbol{x}^{\mathrm{T}} \boldsymbol{H} \boldsymbol{x}}{\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}} \leq \lambda_{\max}(\boldsymbol{H}) \tag{4}
$$

for all \bm{x} , where $\lambda_{\max}(\bm{H})$ and $\lambda_{\min}(\bm{H})$ denote the largest and smallest eigenvalues of H , respectively. This is a fact that we essentially proved in the discussion of least squares in noise, although we did not explicitly state this at the time. Using the upper half of [\(4\)](#page-3-1) we can get a simpler bound on how much progress we make at each iteration:

$$
f(\boldsymbol{x}_{k+1}) \le f(\boldsymbol{x}_k) - \frac{1}{2\lambda_{\max}(\boldsymbol{H})} ||\boldsymbol{r}_k||_2^2.
$$
 (5)

This bound is nice, but it would be even better if we could say something concrete on how large $||\boldsymbol{r}_k||_2^2$ will be. In particular, our intuition should be that if we are far from the solution, the gradient (or r_k) should be large. There is a clever way to prove exactly this. First, note that (4) applied to (2) also yields

$$
f(\mathbf{y}) \ge f(\mathbf{x}) + (\mathbf{y} - \mathbf{x})^{\mathrm{T}} \nabla f(\mathbf{x}) + \frac{\lambda_{\min}(\mathbf{H})}{2} ||\mathbf{y} - \mathbf{x}||_2^2
$$

We can obtain a simpler lower bound for $f(\mathbf{y})$ by determining the smallest value that the right-hand side of this could ever take over all possible choices of y To do this, we simply minimize this lower bound by taking the gradient with respect to \boldsymbol{y} and setting it equal to zero:

$$
\nabla f(\boldsymbol{x}) + \lambda_{\min}(\boldsymbol{H})(\boldsymbol{y} - \boldsymbol{x}) = 0,
$$

From this we obtain that the lower bound will be minimized by

$$
\mathbf{y}-\mathbf{x}=-\frac{1}{\lambda_{\min}(\mathbf{H})}\nabla f(\mathbf{x}).
$$

Plugging this in yields

$$
f(\mathbf{y}) \ge f(\mathbf{x}) - \frac{1}{\lambda_{\min}(\mathbf{H})} \|\nabla f(\mathbf{x})\|_2^2 + \frac{1}{2\lambda_{\min}(\mathbf{H})} \|\nabla f(\mathbf{x})\|_2^2
$$

= $f(\mathbf{x}) - \frac{1}{2\lambda_{\min}(\mathbf{H})} \|\nabla f(\mathbf{x})\|_2^2$.

In particular, this applies when $y = x^*$ (where x^* denotes the minimizer of $f(\boldsymbol{x})$, which after some rearranging yields

$$
\|\nabla f(\boldsymbol{x})\|_2^2 \ge 2\lambda_{\min}(\boldsymbol{H})\left(f(\boldsymbol{x}) - f(\boldsymbol{x}^\star)\right). \tag{PL}
$$

This is a famous and useful result, often referred to as the **Polyak-**Lojasiewicz inequality.

From our previous bound in [\(5\)](#page-3-2) we have that

$$
f(\boldsymbol{x}_{k+1}) - f(\boldsymbol{x}^{\star}) \leq f(\boldsymbol{x}_k) - f(\boldsymbol{x}^{\star}) - \frac{1}{2\lambda_{\max}(\boldsymbol{H})} ||\boldsymbol{r}_k||_2^2.
$$

Combining this with the PL inequality we obtain

$$
f(\boldsymbol{x}_{k+1}) - f(\boldsymbol{x}^{\star}) \leq f(\boldsymbol{x}_k) - f(\boldsymbol{x}^{\star}) - \frac{\lambda_{\min}(\boldsymbol{H})}{\lambda_{\max}(\boldsymbol{H})} (f(\boldsymbol{x}_k) - f(\boldsymbol{x}^{\star}))
$$

=
$$
\left(1 - \frac{\lambda_{\min}(\boldsymbol{H})}{\lambda_{\max}(\boldsymbol{H})}\right) (f(\boldsymbol{x}_k) - f(\boldsymbol{x}^{\star})).
$$

That is, the gap between the current value of the objective function and the optimal value is cut down by a factor of $1 - 1/\kappa(H) < 1$ at each iteration.