
Convergence of gradient descent

The effectiveness of gradient descent depends critically on the “con-
ditioning” of H and the starting point. Consider the two examples
below:
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Figure 17: Convergence of Steepest Descent as a function of (the slope of ) and (the condition
number of ). Convergence is fast when or are small. For a fixed matrix, convergence is worst when
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Figure 18: These four examples represent points near the corresponding four corners of the graph in
Figure 17. (a) Large , small . (b) An example of poor convergence. and are both large. (c) Small
and . (d) Small , large .

(from Shewchuk, “... without the agonizing pain”)

When the conditioning of H is poor, which here corresponds to the
case where the ellipses denoting the level sets of our objective function
are more eccentric or “squished”, and we choose a bad starting point,
convergence can take many iterations even in simple cases.
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We can make this a bit more precise if we define mathematically what
we really mean by the conditioning of H . The condition number
of a matrix H , typically denoted κ(H) is the ratio of the largest to
smallest singular values of H :

κ(H) =
σmax(H)

σmin(H)
.

Note that by the σmax(H) we mean the largest singular value and
by σmin(H) we mean the smallest non-zero singular value, i.e., σR

where R is the rank of H . For the case where H is a square matrix
(as it is in our context), we can also equivalently write

κ(H) =
λmax(H)

λmin(H)
,

where λmax(H) and λmin(H) denote the largest and smallest eigen-
values of H , respectively. The condition number is a natural way of
quantifying just how sensitive we are going to be to noise, but it also
plays a key role in determining how computationally challenging it
will be to solve the least squares problem using iterative methods.

Specifically, below we will provide a bound that shows how f (xk)
approaches f (x?), where x? denotes the minimizer of f . Specifically,
we will show that

f (xk+1)− f (x?) ≤
(

1− 1

κ(H)

)
(f (xk)− f (x?)) . (1)

Let’s think a bit about what this says. Note that 1 − 1/κ(H)
is always less than 1, so each iteration makes some progress. If
κ(H) ≤ 2, then at each iteration we make a lot of progress – cut-
ting the error in half with each iteration. However, if κ(H) is very
large, this constant becomes very close to 1, indicating only minor
improvements.
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Convergence analysis

Recall that we are trying to minimize

f (x) =
1

2
xTHx− xTb.

Our convergence analysis will rely on one very useful property of
f (x), namely that we can write1

f (y) = f (x) + (y − x)T∇f (x) +
1

2
(y − x)TH(y − x). (2)

We can easily verify this by just plugging in ∇f (x) = Hx− b and
simplifying. Specifically, note that we can equivalently write (2) as

f (y)− f (x) = (y − x)T∇f (x) +
1

2
(y − x)TH(y − x).

The right-hand side of this equation can be simplified as

(y − x)T∇f (x) +
1

2
(y − x)TH(y − x)

= (y − x)T(Hx− b) +
1

2
(y − x)TH(y − x)

= yTHx− yTb− xTHx + xTb +
1

2

(
yTHy + xTHx− 2xTHy

)
=

1

2
yTHx− yTb− 1

2
xTHx + xTb

= f (y)− f (x),

as desired.
1This is like taking a second-order Taylor approximation to f around the
point x, but since f is a quadratic function this is not an approximation
but exact.
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Equation (2) immediately tells us something about how much progress
we make at each iteration. If we plug in y = xk+1 and x = xk to (2),
in which case y − x = xk+1 − xk = −αk∇f (xk), we obtain

f (xk+1) = f (xk)− αk‖∇f (x)‖22 +
α2
k

2
(∇f (xk))

TH∇f (xk). (3)

Recall that we had set

αk =
rT
krk

rT
kHrk

,

where rk = −∇f (xk). Plugging this into (3) yields

f (xk+1) = f (xk)−
‖rk‖42
rT
kHrk

+
1

2

( ‖rk‖22
rT
kHrk

)2

rT
kHrk

= f (xk)−
1

2

‖rk‖42
rT
kHrk

.

This tells us that we are guaranteed to make at least some progress
at each iteration. Precisely how much depends on this rather strange
looking function of rk, but we can actually get a much simpler ex-
pression by recalling that for any symmetric, positive semidefinite
matrix H we have that

λmin(H) ≤ xTHx

xTx
≤ λmax(H) (4)

for all x, where λmax(H) and λmin(H) denote the largest and small-
est eigenvalues of H , respectively. This is a fact that we essentially
proved in the discussion of least squares in noise, although we did
not explicitly state this at the time. Using the upper half of (4) we
can get a simpler bound on how much progress we make at each
iteration:

f (xk+1) ≤ f (xk)−
1

2λmax(H)
‖rk‖22. (5)

65

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:08, September 20, 2021



This bound is nice, but it would be even better if we could say
something concrete on how large ‖rk‖22 will be. In particular, our
intuition should be that if we are far from the solution, the gradient
(or rk) should be large. There is a clever way to prove exactly this.
First, note that (4) applied to (2) also yields

f (y) ≥ f (x) + (y − x)T∇f (x) +
λmin(H)

2
‖y − x‖22

We can obtain a simpler lower bound for f (y) by determining the
smallest value that the right-hand side of this could ever take over
all possible choices of y To do this, we simply minimize this lower
bound by taking the gradient with respect to y and setting it equal
to zero:

∇f (x) + λmin(H)(y − x) = 0,

From this we obtain that the lower bound will be minimized by

y − x = − 1

λmin(H)
∇f (x).

Plugging this in yields

f (y) ≥ f (x)− 1

λmin(H)
‖∇f (x)‖22 +

1

2λmin(H)
‖∇f (x)‖22

= f (x)− 1

2λmin(H)
‖∇f (x)‖22.

In particular, this applies when y = x? (where x? denotes the mini-
mizer of f (x)), which after some rearranging yields

‖∇f (x)‖22 ≥ 2λmin(H) (f (x)− f (x?)) . (PL)

This is a famous and useful result, often referred to as the Polyak-
 Lojasiewicz inequality.
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From our previous bound in (5) we have that

f (xk+1)− f (x?) ≤ f (xk)− f (x?)− 1

2λmax(H)
‖rk‖22.

Combining this with the PL inequality we obtain

f (xk+1)− f (x?) ≤ f (xk)− f (x?)− λmin(H)

λmax(H)
(f (xk)− f (x?))

=

(
1− λmin(H)

λmax(H)

)
(f (xk)− f (x?)) .

That is, the gap between the current value of the objective function
and the optimal value is cut down by a factor of 1− 1/κ(H) < 1 at
each iteration.
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