Convergence of gradient descent

The effectiveness of gradient descent depends critically on the “con-
ditioning” of H and the starting point. Consider the two examples
below:
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(from Shewchuk, “... without the agonizing pain”)
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When the conditioning of H is poor, which here corresponds to the
case where the ellipses denoting the level sets of our objective function
are more eccentric or “squished”, and we choose a bad starting point,
convergence can take many iterations even in simple cases.

62

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:08, September 20, 2021



We can make this a bit more precise if we define mathematically what
we really mean by the conditioning of H. The condition number
of a matrix H, typically denoted x(H ) is the ratio of the largest to
smallest singular values of H':

O max(H)
Omin(H )’

Note that by the on.(H) we mean the largest singular value and
by 0w (H ) we mean the smallest non-zero singular value, i.e., og
where R is the rank of H. For the case where H is a square matrix
(as it is in our context), we can also equivalently write

Amax(H )

Amin(H) 7

where Ao (H) and A\ (H) denote the largest and smallest eigen-
values of H, respectively. The condition number is a natural way of
quantifying just how sensitive we are going to be to noise, but it also

plays a key role in determining how computationally challenging it
will be to solve the least squares problem using iterative methods.

k(H) =

k(H) =

Specifically, below we will provide a bound that shows how f(a})
approaches f(a*), where &* denotes the minimizer of f. Specifically,
we will show that

* 1 *
) = @) < (1= = ) V@) = ). (1)

Let’s think a bit about what this says. Note that 1 — 1/k(H)
is always less than 1, so each iteration makes some progress. If
k(H) < 2, then at each iteration we make a lot of progress — cut-
ting the error in half with each iteration. However, if x(H) is very
large, this constant becomes very close to 1, indicating only minor
improvements.
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Convergence analysis

Recall that we are trying to minimize

1
f(x) = §wTHa: —z'b.

Our convergence analysis will rely on one very useful property of
f(2x), namely that we can write'

1

fly)=f@)+(y—=z) Vi@ +5y-—z)Hy-=z). (2

We can easily verify this by just plugging in V f(x) = Hax — b and
simplifying. Specifically, note that we can equivalently write (2) as

fly) — fla) = (y — )"V (@) + oy — =) Hy — )

The right-hand side of this equation can be simplified as

(y )"V f() + 5y~ 2) Hly o)
~(y—a)(Hz ~b) + (y @) H(y ~ =

1
—y 'Hzx —yTb—wTHa:—i—a:Tb+§ (y'Hy +x' Hx — 2x' Hy)
1 1
= éyTH:B —y'b— éwTH:L' +x'b

= [(y) — f(=),

as desired.

IThis is like taking a second-order Taylor approximation to f around the
point &, but since f is a quadratic function this is not an approximation
but exact.
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Equation (2) immediately tells us something about how much progress
we make at each iteration. If we plug in y = @, and & = @} to (2),
in which case y — x = 1 — xp = —,V f(x;), we obtain

@) = Fa) — ol V@) + SV f ) HY ). ()

Recall that we had set
Ty
v Hr),’

where 7, = —V f(};). Plugging this into (3) yields

875

[rell; 1 ( 7513 )2 T
_ _ - H

1 ez
QTEH’T’]{;.

This tells us that we are guaranteed to make at least some progress
at each iteration. Precisely how much depends on this rather strange
looking function of r;, but we can actually get a much simpler ex-
pression by recalling that for any symmetric, positive semidefinite
matrix H we have that

= f(x)

' Hx
x'x
for all @, where A (H) and Ay (H) denote the largest and small-
est eigenvalues of H, respectively. This is a fact that we essentially
proved in the discussion of least squares in noise, although we did
not explicitly state this at the time. Using the upper half of (4) we

can get a simpler bound on how much progress we make at each
iteration: |

f(@r) < fl@r) — m”’”k”g- (5)

Amin(H ) < < Amax(H) (4)
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This bound is nice, but it would be even better if we could say
something concrete on how large ||7.]|5 will be. In particular, our
intuition should be that if we are far from the solution, the gradient
(or ;) should be large. There is a clever way to prove exactly this.
First, note that (4) applied to (2) also yields

)\min (H)
2

We can obtain a simpler lower bound for f(y) by determining the
smallest value that the right-hand side of this could ever take over
all possible choices of y To do this, we simply minimize this lower
bound by taking the gradient with respect to y and setting it equal
to zero:

fly) = fl@)+ (y — =) V@) + ly — |,

V@) + \un(H)(y —x) =0,

From this we obtain that the lower bound will be minimized by

1
y-e= s m @
Plugging this in yields
1 2 1 2
fly) > f(x) — m“vf(w)uz + WHW(@HQ
1 2
= f(x) — m\lvf(w)\lz-

In particular, this applies when y = a* (where * denotes the mini-
mizer of f(a)), which after some rearranging yields

IVf(@)ll; = 22X (H) (f () — f(z¥)). (PL)

This is a famous and useful result, often referred to as the Polyak-
Lojasiewicz inequality.
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From our previous bound in (5) we have that

1 2

f(@r) = f(@") < floeg) — flx") — m”rk\b-

Combining this with the PL inequality we obtain

Flaw) — f(@%) < flaw) — fla) E—EHH)) (f(a) - f(@)
- (1- jm—g))) (Flax) - fla)).

That is, the gap between the current value of the objective function
and the optimal value is cut down by a factor of 1 —1/k(H) < 1 at
cach iteration.
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