
Iterative methods for solving least squares

When A has full column rank, our least squares estimate is

x̂ = (ATA)−1ATy.

If A isM×N , then constructing ATA costsO(MN 2) computations,
and solving the N × N system ATAx = ATy, for example, by
computing the inverse of ATA, costsO(N 3) computations. A similar
complexity is involved in computing the SVD of A, so that will not
be any cheaper. (Note that for M ≥ N , the cost of constructing the
matrix actually exceeds the cost to solve the system.)

This cost can be prohibitive for even moderately large M and N .
But least squares problems with large M and N are common in
the modern world. For example, a typical 3D MRI scan will try to
reconstruct a 128×128×128 cube of “voxels” (3D pixels) from about
5 million measurements. In this case, the matrix A, which models
the mapping from the 3D image x to the set of measurements y
induced by the MRI machine, is M × N where M = 5 · 106 and
N = 2.1 · 106.

With those values, MN 2 is huge (∼ 1019); even storing the matrix
ATA in memory would require terabytes of RAM.

To address this we can consider approaches that return to our for-
mulation of least squares as an optimization program and then solve
it by an iterative descent method. Each iteration is simple, requiring
one application of A and one application of AT.

If ATA is “well-conditioned”, then these methods can converge in
very few iterations. We will be more precise about this later, but

53

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:04, September 20, 2021



here “well-conditioned” roughly means that the ratio of the largest
to the smallest singular values of A is not too big. When this works,
it can make the cost of solving a least squares problem dramatically
smaller — about the cost of a few hundred applications of A.

Moreover, we will not need to construct ATA or even A explicitly.
All we need is a “black box” which takes a vector x and returns Ax.
This is especially useful if it takes � O(MN) operations to apply
A or AT.

In the MRI example above, it turns out that A has a special relation-
ship to the Fourier transform, and because of this it takes about one
second to apply ATA, and a particular iterative method (the con-
jugate gradients method) converges in about 50 iterations, meaning
that the problem can be solved in less than a minute.

To see how this approach works, recall that the least squares estimate
is the solution to the optimization problem

minimize
x∈RN

‖Ax− y‖22.

Note that we can write this equivalently as

minimize
x∈RN

xTATAx− 2xTATy + yTy.

We can ignore terms that do not depend on x, and can also rescale
the objective function by a constant (for convenience) to obtain

minimize
x∈RN

1

2
xTATAx− xTATy. (1)

We have previously shown that a necessary and sufficient condition
for x̂ to be the the minimizer of (1) is to satisfy

ATAx = ATy.

54

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:04, September 20, 2021



More generally, for any H which is symmetric and positive definite
and any vector b, we can consider the optimization problem

minimize
x∈RN

1

2
xTHx− xTb, (2)

and by the same argument we can show that x̂ is the solution to (2)
if and only if

Hx̂ = b.

What remains is to show how we can actually solve an optimization
problem of the form (2) without directly solving the system Hx =
b. Here we will describe iterative methods — most prominently
gradient descent — that do exactly this.

Gradient descent

Say you have an unconstrained optimization program

minimize
x∈RN

f (x)

where f (x) : RN → R is convex. We will give a more formal def-
inition later, but for now lets just go with the very informal notion
that convexity corresponds to a “bowl shape”. One simple way to
solve this program is to simply “roll downhill”. If we are sitting at a
point x0, then as we mentioned previously in our review of multivari-
able calculus, f decreases the fastest if we move in the direction of
the negative gradient −∇f (x0), where we recall that this notation
means the gradient of f with respect to x evaluated at x0.

Thus, suppose that from a starting point x0, we take a step in the
direction of the negative gradient, where the step size is controlled

55

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:04, September 20, 2021



by a parameter α0:

x1 = x0 − α0∇f (x0) .

We then repeat this process:

x2 = x1 − α1∇f (x1)
...

xk = xk−1 − αk−1∇f (xk−1) ,

where, as before, the α0, α1, . . . are appropriately chosen step sizes.
8 Jonathan Richard Shewchuk

-4 -2 2 4 6

-6

-4

-2

2

4

1

2

0

Figure 8: Here, the method of Steepest Descent starts at 2 2 and converges at 2 2 .

Putting it all together, the method of Steepest Descent is:

(10)

(11)

1 (12)

The example is run until it converges in Figure 8. Note the zigzag path, which appears because each
gradient is orthogonal to the previous gradient.

The algorithm, as written above, requires two matrix-vector multiplications per iteration. The computa-
tional cost of Steepest Descent is dominated by matrix-vector products; fortunately, one can be eliminated.
By premultiplying both sides of Equation 12 by and adding , we have

1 (13)

Although Equation 10 is still needed to compute 0 , Equation 13 can be used for every iteration thereafter.
The product , which occurs in both Equations 11 and 13, need only be computed once. The disadvantage
of using this recurrence is that the sequence defined by Equation 13 is generated without any feedback from
the value of , so that accumulation of floating point roundoff error may cause to converge to some
point near . This effect can be avoided by periodically using Equation 10 to recompute the correct residual.

Before analyzing the convergence of Steepest Descent, I must digress to ensure that you have a solid
understanding of eigenvectors.

(from Shewchuk, “... without the agonizing pain”)

For our particular optimization problem

minimize
x

1

2
xTHx− xTb,

we can explicitly compute both the gradient and the best choice
of step size. The (negative) gradient is straightforward to compute
(you’ve already done this on the homework):

−∇
(

1

2
xTHx− xTb

)∣∣∣∣
x=xk

= b−Hxk.

56

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:04, September 20, 2021



Note that this is simply the difference between b and H applied to
the current iterate xk. For this reason it is often called the residual,
denoted by

rk := −∇f (xk) = b−Hxk.

With this notation, the core gradient descent iteration can be written
as

xk+1 = xk + αk rk.

As mentioned above, in this problem there is a nifty way to choose
an optimal value for the step size αk. We want to choose αk so that
f (xk+1) is as small as possible. It is not hard to show that if we think
of f (xk + αrk) as a function of α for α ≥ 0, then f is a (convex)
quadratic function. Thus to find the α that minimizes f (xk+1), we
can choose the value of α that makes the derivative of this function
zero. Specifically, we want

d

dα
f (xk + αrk) = 0.

By the chain rule,

d

dα
f (xk+1) = ∇f (xk+1)

T d

dα
xk+1

= (∇f (xk+1))
Trk

= −rT
k+1rk.

In summary, we need to choose αk such that

rk+1
Trk = 0.

57

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:04, September 20, 2021



Let’s do exactly this:

rk+1
Trk = 0

⇒ (b−Hxk+1)
T
rk = 0

⇒ (b−H (xk + αkrk))
T
rk = 0

⇒ (b−Hxk)
T
rk − αk rk

THrk = 0

⇒ rk
Trk − αk rk

THrk = 0

and so the optimal step size is

αk =
rk

Trk

rk
THrk

.

The gradient descent algorithm performs this iteration until
‖Hxk − b‖2 is below some tolerance ε:

Gradient Descent, version 1

Initialize: x0 = some guess, k = 0, r0 = b−Hx0.

while ‖rk‖2 ≥ ε (not converged) do

αk = rk
Trk/rk

THrk

xk+1 = xk + αk rk

rk+1 = b−Hxk+1

k = k + 1

end while

There is a nice trick that can save us one of two applications of H
needed in each iteration above. Notice that

rk+1 = b−Hxk+1 = b−H (xk + αkrk) = rk − αkHrk.

58

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:04, September 20, 2021



So we can save an application of H by updating the residual rather
than recomputing it at each stage.

Gradient Descent, more efficient version 2

Initialize: x0 = some guess, k = 0, r0 = b−Hx0.
while ‖rk‖2 ≥ ε (not converged) do

q = Hrk

αk = rk
Trk/rk

Tq

xk+1 = xk + αk rk

rk+1 = rk − αk q

k = k + 1
end while

One small caveat with this approach: you will note that we are updat-
ing rk in a recursive fashion. This has the consequence that over time
small numerical errors can accumulate in rk. This can result in a situ-
ation where the algorithm seemingly fails to converge (because ‖rk‖2
remains large), despite actually making good progress. The typical
way to handle this is to “reset” rk by computing rk = b −Hxk

every so often (e.g., once every 50 iterations). Exactly how often you
will want to do this depends on the relative costs associated with
potentially running more unnecessary iterations versus that of the
extra matrix multiply that this “resetting” step requires.

59

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:04, September 20, 2021



Example: Swarm robotics

Suppose that we have N robots with positions p(1),p(2), . . . ,p(N),
where each p(n) is a vector in RD, with D = 2 or 3, depending on the
application. Suppose that we want these robots to meet at the same
location. We do not care where this is, we simply want the robots to
all converge to the same point. We can pose this as the solution to
a convex optimization problem. Specifically, set

x =


p(1)

p(2)

...
p(N)

 ,
so that x ∈ RND. Next, for each robot we define a neighborhood
or a set of indices Nn corresponding to the robots to which robot n
can measure its distance. In other words, if m ∈ Nn, robot n can
compute ‖p(n) − p(m)‖2. We will assume for the sake of simplicity
that these are symmetric in the sense that m ∈ Nn if and only if
n ∈ Nm. We would like all of these distances to be zero, so a natural
objective function that we might want to minimize is

f (x) =
N∑
n=1

∑
m∈Nn

‖p(n) − p(m)‖22.

We can compute the gradient of this function by noting that

∇p(n)f (x) =
∑
m∈Nn

2(p(n) − p(m)) +
∑

m :n∈Nm

2(p(n) − p(m)).

If we make the simplifying assumption that the neighborhoods are
symmetric, so thatm ∈ Nn if and only if n ∈ Nm, then this simplifies

60

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:04, September 20, 2021



to
∇p(n)f (x) = 4

∑
m∈Nn

(p(n) − p(m)).

Putting this all together, we can write

∇f (x) = 4


∑

m∈N1
(p(1) − p(m))∑

m∈N2
(p(2) − p(m))

...∑
m∈NN

(p(N) − p(m))

 .

In this case the update rule xk+1 = xk−αk∇f (xk) nicely de-couples
so that the nth robot has the update rule (ignoring the multiplicative
factor of 4):

p
(n)
k+1 = p

(n)
k − αk

∑
m∈Nn

(p
(n)
k − p

(m)
k ).

This update rule plays a fundamental role in many swarm robotics
problems and is known as the consensus equation. Note that
the update for each robot depends only on local information (the
difference between its own position and that of its neighbors), and
hence each robot can compute its own update without any form of
global coordination.

For a sufficiently small step size (as we will see next time), this algo-
rithm is guaranteed to converge. Moreover, provided that the neigh-
borhoods are fully connected (so that there is at least some indirect
path between any pair of robots) then the global optimum of this
problem will be for all robots to converge to the same point.

61

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 13:04, September 20, 2021


