
Least squares in noise

The real advantage to thinking about least squares through the lens
of the SVD is that it tells us exactly what to expect when our mea-
surements are corrupted with noise. Specifically, suppose we observe

y = Ax + e,

where e ∈ RM is an (unknown) perturbation of our measurements.
Suppose that we then form the least squares estimate:

x̂ls = A†y = A†Ax +A†e. (1)

We would like to understand the effect of the noise vector e on our
estimate of x. One way to understand this is to compare x̂ls to what
we would have obtained if we had been able to use least squares on the
noise-free observations yclean = Ax. The noise-free reconstruction is

x̂clean = A†y = A†Ax.

Combining this with (1) we see that the additional error due to noise
can be measured as

‖x̂ls − x̂clean‖22 = ‖A†e‖22 = ‖V Σ−1UTe‖22. (2)

Now suppose for a moment that the error has unit norm, ‖e‖2 = 1.
Just how bad can the error be? The worst case for (2) in this case is
given by

maximize
e∈RM

‖V Σ−1UTe‖22 subject to ‖e‖2 = 1. (3)
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Note that Σ−1UTe is a vector in RR, and that for any vector z ∈ RR,
we have

‖V z‖22 = zTV TV z = zTz = ‖z‖22,
since the columns of V are orthonormal. Thus, we can simplify (3)
to

maximize
e∈RM

‖Σ−1UTe‖22 subject to ‖e‖2 = 1. (4)

We can simplify a bit further by noticing that, since the columns of
U are orthonormal, ‖UTe‖22 ≤ ‖e‖22. To see why this is the case,
recall from our discussion of alternative forms of the SVD that when
R < M , we can form the matrix

Ũ =
[
U | U 0

]
,

where Ũ is an M ×M orthonormal matrix. It follows immediately
that

‖Ũ
T
e‖22 = eTŨŨ

T
e = eTe = ‖e‖22,

since ŨŨ
T

= I. But it should also be clear that since Ũ
T
e is just

the vector of inner products between the columns in Ũ and e, and
Ũ is just the concatenation of U and U 0,

‖Ũ
T
e‖22 = ‖UTe‖22 + ‖UT

0 e‖22,

and hence we must have ‖UTe‖22 ≤ ‖e‖22.

With this fact in hand, we can consider a slight “relaxation” of (4)
to

maximize
β∈RR

‖Σ−1β‖22 subject to ‖β‖2 = 1.

We are not explicitly enforcing the fact that β should be a linear
combination of the columns of U here, which is why I am calling
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this a relaxation of the original problem. However, this problem has
a simple solution that you will verify in the homework. Specifically
the worst case β will have a 1 in the entry corresponding to the
largest entry in Σ−1, and will be zero everywhere else. Thus

max
β∈RR:‖β‖2=1

‖Σ−1β‖22 = max
r=1,...,R

σ−2r =
1

σ2
R

.

(Recall that by convention, we order the singular values so that σ1 ≥
σ2 ≥ · · · ≥ σR.)

Note that, even though we ignored the constraint that β should be
a linear combination of the columns of U above, it is easy to find an
e such that β = UTe gives us a 1 in the entry corresponding to σR.
In particular, e = uR gives us precisely this β, and so even though
we ignored this constraint, the result would not have changed had
we included this requirement.

Returning to the reconstruction error (2), we now see that

‖x̂ls − x̂clean‖22 = ‖V Σ−1UTe‖22 ≤
1

σ2
R

‖e‖22.

While this is a worst-case bound, notice that if σR is small, the worst
case reconstruction error can be very bad. Later in this course we
will discuss some strategies to mitigate this fact.

Stable Reconstruction with the Truncated SVD

We have seen that if A has very small singular values and we apply
the pseudo-inverse in the presence of noise, the results can be disas-
trous. But it doesn’t have to be this way. There are several ways
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to stabilize the pseudo-inverse. We start be discussing the simplest
one, where we simply “cut out” the part of the reconstruction which
is causing the problems.

As before, we are given noisy indirect observations of a vector x
through a M ×N matrix A:

y = Ax + e. (5)

The matrix A has SVD A = UΣV T, and pseudo-inverse A† =
V Σ−1UT.

At this point it is useful to recall that we could write the matrix
UV T as a sum of outer products of the columns of U and V :

UV T =
R∑
r=1

urv
T
r ,

where R is the rank of A, and ur ∈ RM and vr ∈ RN are columns of
U and V , respectively. See the addendum at the end of these notes
on matrix multiplication if this way of writing a matrix product seems
unfamiliar.

Since Σ is diagonal, we can think ofUΣ as just rescaling the columns
of U , so that we can also rewrite A = UΣV T as a sum:

A =
R∑
r=1

σrurv
T
r ,

where the σr are the singular values. Similarly, we can write the
pseudo-inverse as

A† =
R∑
r=1

1

σr

vru
T
r .
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Given y as above, we can write the least-squares estimate of x from
the noisy measurements as

x̂ls = A†y =
R∑
r=1

1

σr

〈y,ur〉vr. (6)

As we can see (and have seen before) if any one of the σr are very
small, the least squares reconstruction can be a disaster.

A simple way to avoid this is to simply truncate the sum (6), leaving
out the terms where σr is too small (1/σr is too big). Exactly how
many terms to keep depends a great deal on the application, as there
are competing interests. On the one hand, we want to ensure that
each of the σr we include has an inverse of reasonable size, on the
other, we want the reconstruction to be accurate (i.e., not to deviate
from the noiseless least squares solution by too much).

We form an approximation A′ to A by taking

A′ =
R′∑
r=1

σrurv
T
r ,

for some R′ < R. Again, our final answer will depend on which R′

we use, and choosing R′ is often times something of an art. It is clear
that the approximationA′ has rankR′. Note that the pseudo-inverse
of A′ is also a truncated sum

A′† =
R′∑
r=1

1

σr

vru
T
r .

Given noisy data y as in (5), we reconstruct x by applying the
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truncated pseudo-inverse to y:

x̂trunc = A′†y =
R′∑
r=1

1

σr

〈y,ur〉vr.

How good is this reconstruction? To answer this question, we will
again compare it to the least squares reconstruction corresponding to
“noiseless” measurements x̂clean = A†Ax. The difference between
these two is the reconstruction error (relative to x̂clean) as

x̂trunc − x̂clean = A′†y −A†Ax
= A′†Ax +A′†e−A†Ax
= (A′† −A†)Ax +A′†e.

Proceeding further, we can write the matrix A′† −A† as

A′† −A† =
R∑

r=R′+1

− 1

σr

vru
T
r ,

and so the first term in the reconstruction error can be written as

(A′† −A†)Ax =
R∑

r=R′+1

− 1

σr

〈Ax,ur〉vr

=
R∑

r=R′+1

− 1

σr

〈
R∑
j=1

σj〈x,vj〉uj,ur

〉
vr

=
R∑

r=R′+1

− 1

σr

R∑
j=1

σj〈x,vj〉〈uj,ur〉vr

=
R∑

r=R′+1

−〈x,vr〉vr (since 〈ur,uj〉 = 0 unless j = r).
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The second term in the reconstruction error can also be expanded
against the vr:

A′†e =
R′∑
r=1

1

σr

〈e,ur〉vr.

Combining these expressions, the reconstruction error can be written

x̂trunc − x̂clean =
R′∑
r=1

1

σr

〈e,ur〉vr︸ ︷︷ ︸ +
R∑

r=R′+1

−〈x,vr〉vr︸ ︷︷ ︸
= Noise error + Approximation error.

Since the vr are mutually orthogonal, and the two sums run over
disjoint index sets, the noise error and the approximation error will
be orthogonal. Also

‖x̂trunc − x̂clean‖22 = ‖Noise error‖22 + ‖Approximation error‖22

=
R′∑
r=1

1

σ2
r

|〈e,ur〉|2 +
R∑

r=R′+1

|〈x,vr〉|2.

The reconstruction error, then, is signal dependent and will depend
on how much of the vector x is concentrated in the subspace spanned
by vR′+1, . . . ,vR. We will lose everything in this subspace. On the
other hand, if it contains a significant part of x, then there is not
much least squares can do for you.

The worst-case noise error occurs when e is aligned with uR′:

‖Noise error‖22 =
R′∑
r=1

1

σ2
r

|〈e,ur〉|2 ≤
1

σ2
R′
· ‖e‖22.
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Stable Reconstruction using Tikhonov
Regularization

Tikhonov1 regularization is another way to stabilize the least squares
recovery. It has the nice features that: 1) it can be interpreted using
optimization, and 2) it can be computed without direct knowledge
of the SVD of A.

Recall that we motivated the pseudo-inverse by showing that x̂ls =
A†y is a solution to

minimize
x∈RN

‖y −Ax‖22. (7)

When A has full column rank, x̂ls is the unique solution, otherwise
it is the solution with smallest energy. When A has full column
rank but has singular values which are very small, huge variations
in x (in directions of the singular vectors vr corresponding to the
tiny σr) can have very little effect on the residual ‖y −Ax‖22. As
such, the solution to (7) can have wildly inaccurate components in
the presence of even mild noise.

One way to counteract this problem is to modify (7) with a regu-
larization term that penalizes the size of the solution ‖x‖22 as well
as the residual error ‖y −Ax‖22:

minimize
x∈RN

‖y −Ax‖22 + δ‖x‖22. (8)

The parameter δ > 0 gives us a trade-off between accuracy and
regularization; we want to choose δ small enough so that the residual
for the solution of (8) is close to that of (7), and large enough so that
the problem is well-conditioned (i.e., stable in the presence of noise).

1Andrey Tikhonov (1906-1993) was a 20th century Russian mathematician.
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Just as with (7), which is solved by applying the pseudo-inverse to
y, we can write the solution to (8) in closed form.

We have two ways of writing this solution. In terms of the SVD of
A, the minimizer of (8) is

x̂tik = V α̂tik

= V (Σ2 + δI)−1ΣUTy. (9)

Alternatively, we can write the solution in terms of A as

x̂tik = (ATA + δI)−1ATy. (10)

Note that even ifATA is not invertibleATA+δI always is (if δ > 0).
Thus, the expression (10) holds for all M,N, and R. It is also the
case that

x̂tik = AT(AAT + δI)−1y.

You will show that all of these expressions are equivalent on the next
homework.

Tikhonov regularization is in some sense very similar to the truncated
SVD, but with one significant advantage: because of the second way
of writing the solution, we do not need to explicitly calculate the SVD
to solve (8). The importance of not needing to explicitly compute
the SVD is significant when we are solving large problems. When A
is large (M,N > 105, say) it may be expensive or even impossible to
construct the SVD and compute with it explicitly. However, if it has
special structure (if it is sparse, for example), then it may take many
fewer than MN operations to compute a matrix vector productAx.

In these situations, a matrix free iterative algorithm can be used
to perform the inverse required in (10). A prominent example of such
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an algorithm is gradient descent and its many variants, which we
will see very soon.

We can get a better feel for what Tikhonov regularization is doing
by comparing it directly to the pseudo-inverse. Recall that the least
squares reconstruction x̂ls can be written as

x̂ls =
R∑
r=1

1

σr

〈y,ur〉vr.

The Tikhonov reconstruction x̂tik derived above is

x̂tik =
R∑
r=1

σr

σ2
r + δ

〈y,ur〉vr. (11)

Notice that when σr is much larger than δ,

σr

σ2
r + δ

≈ 1

σr

, σr � δ,

but when σr is small

σr

σ2
r + δ

≈ 0, σr � δ.

Thus the Tikhonov reconstruction modifies the important parts (com-
ponents where the σr are large) of the pseudo-inverse very little, while
ensuring that the unimportant parts (components where the σr are
small) affect the solution only by a very small amount. This damp-
ing of the singular values, is illustrated below.
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Above, we see the damped multipliers σr/(σ2
r + δ) versus σr for

δ = 0.1 (blue), δ = 0.05 (red), and δ = 0.01 (green). The black
dotted line is 1/σr, the least squares multiplier. Notice that for large
σr (σr > 2

√
δ, say), the damping has almost no effect.

This damping makes the Tikhonov reconstruction exceptionally sta-
ble; large multipliers never appear in the reconstruction (11). In fact
it is easy to check that

σr

σ2
r + δ

≤ 1

2
√
δ

no matter the value of σr.

You can perform a very similar kind of noise analysis for Tikhonov
reconstruction as we just did for the truncated SVD, but we will leave
you to do this at home.
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