
The singular value decomposition

While we have now derived the solution to the least squares problem
(at least in certain special cases), our solution so far has not provided
much insight into what kind of properties we can expect the solution
to have. A particularly useful lens for thinking about least squares
is through the singular value decomposition of the matrix A
in the objective function ‖y − Ax‖22. The singular value decom-
position, or SVD for short, is just one of a family of useful matrix
decompositions that you might encounter in data science. In general,
a matrix decomposition is where we take a matrix A and re-express
it as a product (or sometimes a sum) of other simpler matrices that
more clearly reveal some important structure of A.

The SVD of a real-valued1 M×N matrixA is simply a factorization
of the form

A = UΣV T ,

where U , Σ, and V satisfy a number of properties, described below.
Note that these properties involve a number of concepts from linear
algebra such as the notion of an orthnormal basis, the rank of
a matrix, and the concept of eigenvectors and eigenvalues. If
these are a little fuzzy, review the linear algebra primer at the end of
these notes before proceeding.

1. U is an M ×R matrix

U =

 | | |
u1 u2 · · · uR

| | |

 .
1You can just as easily define the SVD for complex-valued matrices, but then

every matrix transpose has to be replaced with a Hermetian transpose, in
which you take both a transpose and compute the complex conjugate of
all the entries. In this class we will only work with real-valued matrices,
so we will stick with the simpler notation.
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whose columns um ∈ RM are orthonormal. Note that while
UTU = I, in general UUT 6= I when R < M . The columns
ofU are an orthobasis for the column space ofA. The columns
of U are called the left-singular vectors of A.

2. V is an N ×R matrix

V =

 | | |
v1 v2 · · · vR

| | |

 .
whose columns vn ∈ RN are orthonormal. Again, whileV TV =
I, in general V V T 6= I when R < N . The columns of V are
an orthobasis for the row space of A. The columns of V are
called the right-singular vectors of A.

3. Σ is an R×R diagonal matrix with positive entries:

Σ =


σ1 0 · · · 0
0 σ2

...
... . . . ...
0 · · · · · · σR

 .
We call the σr the singular values of A. By convention, we
will order them such that σ1 ≥ σ2 ≥ · · · ≥ σR.

What is important for our purposes is that any matrix (no matter
its dimensions or entries) can be factorized in this form.

We can say a little bit more about how to interpret the SVD by re-
calling the notion of an eigenvector and its corresponding eigen-
value. Recall that for a square matrix B, we call a vector x an
eigenvector if it satisfies

Bx = λx,
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for some λ ∈ C. We call λ the eigenvalue associated with x.

Note that it is possible for B to have complex eigenvalues, even if B
contains only real numbers. However, an important fact is that if B
is symmetric, i.e., if B = BT, then all of its eigenvalues are real. An
important class of matrices that we will arise frequently throughout
this course are: positive semidefinite matrices. When we say
that a matrix is positive semidefinite, we mean that it is symmetric
and all of its eigenvalues are non-negative. If a symmetric matrix has
eigenvalues that are strictly greater than zero, we call it positive
definite.

There is a lot more that we could say about eigenvectors and eigen-
values, but for now all we want to point out is that the um and the
vn in the SVD can be interpreted as eigenvectors of matrices related
to A. For M 6= N , A does not even have eigenvectors, but the um

are eigenvectors of AAT, and the vn are eigenvectors of ATA.

To see this, note that

AAT = UΣV TV ΣUT = UΣ2UT,

since V TV = I. Note that since Σ is a diagonal matrix, Σ2 is just
the same diagonal matrix, but where the entries along the diagonal
are squared: σ2

r . Now consider AATum. If we let em denote the mth

“standard basis element”, i.e., the vector of all zeros with a single 1
in the mth entry, then note that:

AATum = UΣ2UTum

= UΣ2em
= Uσ2

mem
= σ2

mum.
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This shows that um is an eigenvector of AAT. Moreover, σ2
m is the

corresponding eigenvalue. Thus, the singular values σ1, . . . , σR are
the square roots of the non-zero eigenvalues ofAAT. This also shows
thatAAT , in addition to being symmetric (since (AAT)T = AAT),
is in fact positive semidefinite, since σ2

m is always positive.

By essentially the same argument, you can show that v1,v2, . . . ,vR

are eigenvectors of ATA, and that the singular values σ1, . . . , σR

are also the square roots of the non-zero eigenvalues of the positive
semidefinite matrix ATA.

The rank R is the dimension of the space spanned by the columns of
A, this is the same as the dimension of the space spanned by the rows.
Thus R ≤ min(M,N). We say A is full rank if R = min(M,N).

When A is overdetermined (M > N), the decomposition looks
like this  A

 =

 U


σ1

. . .
σR

 V T

 .

When A is underdetermined (M < N), the SVD looks like this A

 =

 U

σ1
. . .

σR

 V T

 .
When A is square and full rank (M = N = R), the SVD looks
like  A

 =

 U

σ1
. . .

σN

 V T

 .
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Alternative forms of the SVD

In most popular software packages, if you ask it to compute the
SVD of a matrix A, it will return matrices U , Σ, and V , but the
dimensions will differ from what I have written above. In particular,
the default output will be:

• an M ×M matrix Ũ ,

• an M ×N matrix Σ̃,

• and N ×N matrix Ṽ .

So how does this output relate to what we have given above? Quite
simply, U is the first R columns of Ũ , Σ is the first R columns and
rows of Σ̃, and V is the first R columns of Ṽ .

This raises the question of what is happening in the remaining columns
of Ũ , Σ̃, and Ṽ . For Σ̃, the additional rows and columns are all
zeros. In the case where R < M , so that U 6= Ũ , we can write

Ũ =
[
U | U 0

]
,

where U 0 is an M × (M − R) matrix whose columns are an or-
thonormal basis for the part of RM that is orthogonal to the columns
of U . If R < N , so that V 6= Ṽ , we can similarly write

Ṽ =
[
V | V 0

]
,

where V 0 is an N×(N−R) matrix whose columns are an orthonor-
mal basis for the part of RN orthogonal to the columns of V .

Note that, since Σ̃ is just a zero-padded version of Σ, it is not hard
to show that

ŨΣ̃Ṽ
T

= UΣV T.
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The zeros in Σ̃ simply eliminate the contribution from U 0 and V 0,

so we are equally entitled to write A = ŨΣ̃Ṽ
T
. Just as was the

case with U and V , we can write

Ũ
T
Ũ = I Ṽ

T
Ṽ = I.

However, in this case, since Ũ and Ṽ are square matrices, we also
have that

ŨŨ
T

= I Ṽ Ṽ
T

= I.

This is a consequence of a general fact about square matrices that
you will prove on the homework. An equivalent way to think about
this fact is that Ũ is an orthonormal basis for all of RM and Ṽ is an
orthonormal basis for all of RN . Please remember, however, that in
general this is not true for U and V .

The SVD and least squares

So what does the SVD have to do with least squares? Recall that
we had previously argued that if the matrix ATA is invertible, then
the optimization problem

minimize
x∈RN

‖y −Ax‖22 (1)

has solution
x̂ = (ATA)−1ATy. (2)

Now what can we say about this formula using the fact that we can
write A = UΣV T? First, note that

ATA = V ΣUTUΣV T = V Σ2V T.
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Next, we use the fact that

(V Σ2V T)−1 = V Σ−2V T.

This is easy to check:

V Σ2V T(V Σ−2V T) = V Σ2Σ−2V T = V V T = I.

Recall that, in general, we cannot always conclude that V V T = I.
However, here we assume that the N ×N matrix ATA is invertible.
This matrix can only be invertible when it is full-rank, meaning that
R = N , in which case, we also have V V T = I.

Returning to the least squares problem, using the above, we have
that

(ATA)−1AT = V Σ−2V TV ΣUT

= V Σ−2ΣUT

= V Σ−1UT.

Thus, we arrive at an alternative way to express the solution to (1),
now in terms of the SVD of A:

x̂ = V Σ−1UTy. (3)

This way of writing the least squares solution has a few nice ad-
vantages. First, recall that our previous formula in (2) only applied
when ATA was invertible. It is not too hard to show (although we
will not do so here) that (3) provides the solution to (1) regardless
of whether ATA is invertible or not.

Moreover, it also provides the solution to a related problem. Suppose
that we have a system y = Ax which is underdetermined, meaning

33

Georgia Tech ECE 3803 Fall 2021; Notes by M. Davenport. Last updated 12:27, September 7, 2021



that M < N . In this case, the least squares problem in (1) has
infinitely many solutions. An alternative approach that might make
more sense in this context (which can also be thought of as a kind of
“least squares”) is to, from all x that satisfy y = Ax, choose the one
that is “smallest” in the Euclidean norm sense. As an optimization
problem we could write this as:

minimize
x∈RN

‖x‖22 subject to y = Ax. (4)

It turns out that V Σ−1UTy is also the solution to (4).

Finally, it is relatively straightforward to show that in the case where
A is square and invertible (M = N = R), then V Σ−1UT is simply
A−1.

A geometric perspective on least squares

Before we finally move on to talk a bit more about practical algo-
rithms, lets see one more way in which the SVD can help us to think
about what least squares is doing.

Specifically, another way to think about least squares involves a sim-
ple geometric problem. Suppose we are given a vector x ∈ RM and
a subspace2 T = span({a1,a2, . . . ,aN}) (where N < M).

If x does not already live in the span of a1,a2, . . . ,aN , we might
ask “what is the closest point x̂ ∈ T to x? This is illustrated below:

2Recall that a subspace of RM is just a set of vectors that can be thought of
as a vector space in its own right, meaning that any linear combination of
vectors in the subspace produces another vector in that same subspace.
The span of N < M vectors in RM , such as a 2D plane in 3 dimensions,
is the canonical example of a subspace.
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x

T

x̂

Mathematically, we want to find the x̂ ∈ T that minimizes ‖x−x̂‖2,
i.e., given x, we want to solve the optimization program

minimize
y∈RM

‖x− y‖22 subject to y ∈ T .

This might initially seem different than what we’ve been consider-
ing so far – it looks like a least squares problem, but we have the
constraint that y lives in a subspace. However, think for a moment
about what the constraint y ∈ T actually means.

If y ∈ T , then y can be written as a linear combination of the
vectors a1, . . . ,aN . If A is the M × N matrix with columns given
by a1, . . . ,aN , this is equivalent to saying that we can write y = Aα
for some α ∈ RN . Thus, instead of optimizing over y ∈ T we can
simply optimize over α in the equivalent problem

minimize
α∈RN

‖x−Aα‖22.

Note that this is simply the standard least squares problem we have
been studying for a while now, with solution α̂ = V Σ−1UTx. This
gives us a solution for x̂ of our original problem of

x̂ = Aα̂

= UΣV TV Σ−1UTx

= UΣΣ−1UTx

= UUTx.
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Note that in the picture on the previous page, I indicated that the
vector x̂−x was orthogonal to the line that represents the subspace
T . This is a general fact for least squares solutions: at the optimal
x̂, we always have that the error x̂−x is orthogonal to T = R(A).

This is easy to see using the SVD. Since for any y ∈ R(A) we can
write y = UΣV Tα, we have

〈x̂− x,y〉 = 〈UUTx− x,UΣV Tα〉
= αTV ΣUTUUTx−αTV ΣUTx

= αTV ΣUTx−αTV ΣUTx

= 0,

for any α ∈ RN .

The fact that the optimal approximation to x in T , x̂ results in an
error x̂ − x that is orthogonal to T is often called the orthogo-
nality principle. In fact, you can actually start a discussion of
least squares by first showing that the orthogonality principle must
be true, and then using this fact to derive the solution to the least
squares problem.

Another piece of terminology you may encounter is that x̂ is the
orthogonal projection of x onto T . In general, when people talk
about an orthogonal projection, this is simply shorthand for taking
a vector and finding the closest point in some subspace T to x. The
fact that you do this by finding a point in T from which the direction
to x is orthogonal to T is why it gets the name “orthogonal”.
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Linear Algebra Review II: Bases and subspaces

The last remaining set of concepts from linear algebra that we need
to review relate to the notion of a basis (and if we have an inner
product, an orthonormal basis). To get offer formal definitions
of these terms, we first need to review a few basic ideas.

Linear combinations and spans

LetM = {v1,v2, . . . ,vN} be a set of vectors in a real-valued vector
space S .

Definition: A linear combination of vectors in M is a sum of
the form

a1v1 + a2v2 + · · · + aNvN

for some a1, a2, . . . , aN ∈ R.

Definition: The span ofM is the set of all linear combinations of
M. We write this as

span(M) = span({v1,v2, . . . ,vN})

Example:
Suppose

S = R3, v1 =

1
1
0

 , v2 =

0
1
0

 .
In this case,

span({v1,v2}) = the (x1, x2) plane.
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In other words, the span of v1,v2 is the set of any x ∈ R3 of the
form

x =

x1

x2

0

 .
It should be clear that for any such x, we can write x as a linear
combination of v1 and v2:

x = x1v1 + (x2 − x1)v2.

Linear dependence

A set of vectors {vn}Nn=1 is said to be linearly dependent if there
exists scalars a1, a2, . . . , aN , not all equal to 0, such that

N∑
n=1

an vn = 0.

Note that in such a case, we can write (at least) one of the vectors
vn as a linear combination of the others.

Likewise, if
∑

n anvn = 0 only when all the an = 0, then {vn}Nn=1 is
said to be linearly independent.

Example:

S = R3, v1 =

2
1
0

 v2 =

1
1
0

 v3 =

1
2
0


It is too hard to find an a1, a2, a3 such that

a1v1 + a2v2 + a3v3 = 0.
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Bases

Definition: A basis of a finite-dimensional3 vector space S is a set
of vectors B such that

1. span(B) = S
2. B is linearly independent

The second condition ensures that all bases of S will have the same
number of elements.

The dimension of S is the number of elements required in a basis
for S .

Examples:

1. RN with

{v1,v2, . . . ,vN} =




1
0
0
...
0

 ,


0
1
0
...
0

 , · · · ,


0
0
0
...
1




This is the standard basis for RN .
The dimension of RN is N .

2. RN with any set of N linearly independent vectors.

3. S = {polynomials of degree at most p}.
A basis for S is B = {1, t, t2, . . . , tp}.
The dimension of S is p + 1.

3Things get a bit more complicated in infinite-dimensional vector spaces.
We won’t worry about those details in this class.
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Column space, row space, and rank

Consider the matrix V which has the vectors v1,v2 . . . ,vN ∈ RM

as columns:

V =

 | | |
v1 v2 · · · vN

| | |

 .
Note that this is an M ×N matrix.

The column space, also commonly called the range, of V is just
the span of the columns of V , i.e., span({v1,v2, . . . ,vN}). This
is often denoted by R(V ). Note that R(V ) ⊆ RM (since the vj

are vectors in RM). It may be possible to have R(V ) = RM – this
will occur if V has M linearly independent columns. Note that V
cannot have more than M linearly independent columns: since RM

is an M -dimensional space, you cannot have more than M linearly
independent vectors within that space. Also, note that if N < M ,
then the columns of V cannot possibly span all of RM . Moreover,
even if N > M , it is still possible that R(V ) is a strict subspace of
RM .

The row space is defined similarly, and is simply the span of the
rows of V , or equivalently, the row space is the column space of V T.
Note that the row space is a subspace of RN .

It is a fact that for any matrix V , the column space and row space
have the same dimension – that is, the maximum number of linearly
independent columns is the same as the maximum number of linearly
independent rows. This dimension is called the rank of V .
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Orthogonal bases

A collection of vectors {v1,v2, . . . ,vN} in a finite dimensional vector
space S is called an orthogonal basis if

1. span({v1,v2, . . . ,vN}) = S ,

2. 〈vn,vm〉 = 0 for all n 6= m.

If in addition the vectors are normalized (under the induced norm),

‖vn‖ = 1, for n = 1, . . . , N,

we will call it an orthonormal basis or orthobasis.

In the case where v1,v2, . . . ,vN are vectors in RM , we can form an
M ×N matrix V with them as columns:

V =

 | | |
v1 v2 · · · vN

| | |

 .
In this case, another way to express that v1,v2, . . . ,vN are othornor-
mal is that

V TV = I.

To see this, note that V Tvn computes the inner product between vn

and all N vectors in the basis: — vT
1 —
...

— vT
N —

 |vn

|

 =

 〈vj,v1〉
...

〈vj,vN〉

 .
These inner products will all be zero except for the nth element.
Repeating this for v1,v2, . . .vN results in V TV = I.
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